Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2015

Subject Code: 2140505 Subject Name: Chemical Engineering Maths Time: 10:30am-1.00pm Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) 1) Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its absolute and 03 relative error.
 - 2) Using Bisection method find a real root of the equation $x^3 2x 5 = 0$ correct to 3 04 decimal places.
 - (b) 1) The table below gives the temperature $T(\text{in }^{\circ}\text{C})$ and length l(in mm) of a heated **03** rod. If $l = a_0 + a_0 T$, find the best values for a_0 and a_1 .

0	1 ,		0	1		
T(in °C)	20	30	40	50	60	70
l(in mm)	800.3	800.4	800.6	800.7	800.9	801.0

- 2) Using second order Runge-Kutta method find an approximate value of y 04 corresponding to x = 0.2, taking h = 0.1, given that $\frac{dy}{dx} = y x$, y(0) = 2.
- Q.2 (a) 1) The out flow chemical concentration (c) from a completely mixed reactor is 03 measured at various time (t) as

t(min)	0	2	4	6	8	10	12	14
$c(mg/m^3)$	12	22	32	45	58	70	75	78

For an out flow of $Q = 0.3 \ m^3 / s$, estimate the mass of chemical in grams by using the formula $M = Q \int_{t=0}^{t=14} c dt$.

2) Using Newton's divided difference formula find f(8) and f(15) from given table: 04

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

- (b) 1) Solve the equation $x^3 7x^2 + 36 = 0$, given that one root is double of another, by 03 using the relations of roots.
 - 2) Transform the equation $x^3 6x^2 + 5x + 8 = 0$, into another in which the second term **04** is missing, by using synthetic division.

OR

- (b) 1) Find the real root of the equation $\cos x = xe^x$ using regula falsi method correct to 03 four decimal places.
 - 2) Use the multiple-equation Newton-Raphson method to determine roots of equations 04 $x^2 + xy = 10$ and $y + 3xy^2 = 57$ with guesses of $x_0 = 1.5$ and $y_0 = 3.5$.

Q.3 (a) 1) Using Gauss-Seidel method, find the solution, to three decimals, of the system 83x+11y-4z=957x+52y+13z=104

$$3x + 8y + 29z = 71$$
.

Seat No.:

Date:26/05/2015

Total Marks: 70

 $\begin{bmatrix}
0 & -2 & 0 \\
1 & 0 & 5
\end{bmatrix}$ 2) Find the eigen values and eigen vectors of the matrix

(b)

- 1) Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$
- 2) Determine the constants *a* and *b* by the method of least square such that $y = ae^{bx}$ fits 04 the following data:

 $\begin{bmatrix} 1 & 6 & 1 \end{bmatrix}$

x	2	4	6	8	10						
у	4.077	11.084	30.128	81.897	222.62						
	OR										

Q.3 (a) 1) Using iterative power method, find the largest eigen value and corresponding eigen 03 vector of the matrix

		1	2	0	
	L	0	0	3	
2)	Using Jacobi method solve the system	of	equ	atio	ons,
	10x + 2	2 y	' + <i>z</i>	=9)
	2x + 2	0 y	y - 2	2 <i>z</i> =	-44
	-2x +	3y	v + 1	0 <i>z</i>	= 22.

(b)

1) Use Gauss elimination to solve the system $x_1 - 2x_2 + 3x_3 = 9$

$$3x_1 - x_2 + 5x_3 = 14$$

 $2x_1 + x_2 - x_3 = -1$

2) Fit a function of the form $y = ax^{b}$ to the following data:

x	1	2	3	4	5
у	7.1	27.8	62.1	110	161

Q.4 (a) 1) Find $\frac{dy}{dx}$ at x = 1.1, using following data:

ил							
<i>x</i> :	1.0	1.1	1.2	1.3	1.4	1.5	1.6
<i>y</i> :	7.989	8.403	8.781	9.129	9.451	9.750	10.031

2) Values of x (in degree) and $\sin x$ are given in the following table:

X	15	20	25	30	35	40
$\sin x$	0.2588190	0.3420201	0.4226183	0.5	0.5735764	0.6427876

Using Newton's backward difference formula find the value of sin 38°.

(b) 1) Applying Lagrang's formula, find a cubic polynomial which approximates the 03 following data:

x	-2	-1	2	3
y(x)	-12	-8	3	5

2) Using the Euler's method find y(0.04), given that y' = -y, y(0) = 1 with h = 0.01. 04

04

03

04

03

04

2

03

Q.4 (a) 1) Find f'(10) from the following data:

x	3	5	11	27	34
f(x)	-13	23	899	17315	35606

2) From the following table, estimate the number of students who obtain marks bewseen 04 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31

- (b) 1) Apply Simpson's rule to evaluate $\int_0^1 \sqrt{1-x^2} dx$, using h = 10. 03
 - 2) Solve the differential equation $y' = x y^2$ with the condition y(0) = 1 at x = 0.2, by 04 using Taylor series.

Q.5 (a) 1) Apply Runge-Kutta fourth order method, to find an approximate value of y(0.2), given that $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1.

2) Using modified Euler's method, obtain a solution of the equation $\frac{dy}{dx} = x + y$ with initial coordinate y = 1 at x = 0 for x = 0.3 with h = 0.1.

- (b) 1) what is the classification of the partial differential equation $f_{xx} + 2f_{xy} + f_{yy} = 0.$ 02
 - 2) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ for following mesh-grid:

OR

Q.5 (a) 1) The differential equation $y' = 1 + y^2$ satisfies the following data. Use Milne's **03** Predictor-Corrector method to find y(0.8).

<i>x</i> :	0	0.2	0.4	0.6	
<i>y</i> :	0	0.2027	0.4228	0.6841	
		$d^2 v$			04

2) Solve the boundary value problem $\frac{d^2y}{dx^2} - y = 0$ with y(0) = 0 and y(2) = 3.62686, using finite difference method.

- (b) 1) Determine whether the following equation is elliptic or hyperbolic? **02** $(x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0.$
 - 2) Solve the partial differential equation $u_{xx} + u_{yy} = -10(x^2 + y^2 + 10)$ in the following 05 domain.

03

03

05
