Enrolment N	0
-------------	---

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2015

S	ubje	ect Code: 2140706 Date:30/05/2015 ect Name: Numerical and Statistical methods for Computer meering							
Τ	ime	:10:30am-1.30pm Total Marks: 70							
	isti uc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 							
Q.1	(a)	(i) Discuss briefly the various types of errors in performing numerical calculations.	04						
	(b)	 (ii) Define ill-conditional and well conditional of linear equations. The population of the town is given below. Estimate the population for the year 1895 and 1930 using suitable interpolation. year 1891 1901 1911 1921 1931 	03 07						
		Population in thousand46668193101							
Q.2	(a) (b)	Derive Newton- Raphson method in brief. Find positive root of an equation $x^3 + x^2 - 1 = 0$ by iteration method correct to four decimal places.	07 07						
		OR							
	(b)	Find smallest positive root of an equation $x - e^{-x} = 0$ using Regula Falsi method correct to four significant digits.	07						
Q.3	(a)	By Gauss Seidel method solve the following system 2x + y + 6z = 9	07						
		8x + 3y + 2z = 13							
		x + 5y + z = 7							
	(b)	Fit a second degree polynomial using least square method to data given belowx01234Y11.81.32.56.3	07						
		1 1 1.0 1.0 2.0 0.0 OR							
Q.3	(a)	Solve the following equations using Gauss Elimination x + y + 2z = 4							
		3x + y - 3z = -4							
	(b)	2x-3y-5z = -5 Obtain the cubic splines for the first two subinterval to following data	07						
	(0)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	07						
Q.4	(a)	(i)Write an algorithm for simpson's 3/8 rule to integrate the tabulated function.	04						
		(ii) Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Trapezoidal rule.	03						
	(b)	Solve initial value problem $\frac{dy}{dx} = x\sqrt{y}$, y(1) =1 and hence find y(1.5) by taking	07						

h = 0.1 using Euler's method.

OR

Q.4 (a) (i)Write an algorithm for Lagrange's interpolation method to find functional value. 04

(ii) Construct Divided difference table for the data given below

- (b) Solve boundary value problem $\frac{d^2 y}{dx^2} = \frac{dy}{dx}$, y(0) = 0 and y(1) = 1.17 07
- Q.5 (a) Develop a C program of Runge-Kutta second order method to solve ordinary 07 differential equation.
 - (b) Obtain the two regression lines from the following data and hence find the 07 correlation coefficient.

Х	6	2	10	4	8
у	9	11	5	8	7

OR

- Q.5 (a) Develop a C program to fit regression line x on y through set of points using method 07 of least squares.
 - (b) Assume a four yearly cycle and calculate trend by method of moving averages from 07 the following data relating to the production in pen drives in India.

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Production	464	515	518	467	502	540	557	571	586	612
(million										
kgs)										

03