0.3

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

Subject Code: 2140909 Subject Name: FIELD THEORY Time: 10:30am-1.00pm **Instructions:**

Date: 08/06/2015

Total Marks: 70

- 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Explain cylindrical coordinate system in brief. Also write the equations of 07 differential length, differential surfaces and differential volume elements.
 - (b) The given points are A(x = -1, y = 2, z = 3), $B(\rho = 3, \Phi = 60^{\circ}, z = 6)$ 07 and C(x = 2, y = 3, z = -1). Find (i) Cylindrical co-ordinates of A (ii) Cartesian co-ordinates of **B** and (iii) Spherical co-ordinates of **C**.
- Q.2 (a) An infinite uniform line charge having line charge density of $\rho_L = 30 \,\mu C/m$ 07 placed on the z-axis. Find the total electric field intensity at (3, 4, 5) m.
 - (b) Derive the equation of total electric field intensity in vector form due to infinite 07 uniform sheet charge distribution in free space.

OR

- A positively charged circular ring with $\rho_L = 10 \, nC/m$ having radius of 5 m 07 **(b)** lies on z = 0 plane with its centre at origin. Find \overline{E} at point (0, 0, 5) m and also find the value of a point charge Q which will produce the same \overline{E} at a point (0, 0, 5)m
- State and explain the Gauss's law. 07 (a) Derive the Maxwell's first equation applied to Electrostatic by using equations 07 **(b)** of divergence and Gauss's law for electric flux density \overline{D} .

OR

- Q.3 Define the potential gradient. Derive relationship between potential and electric 07 (a) field intensity.
 - (b) Derive equation of potential difference V_{AB} within the electric field produced by 07 a point charge Q.
- Write a short note on continuity equation. 07 **O.4** (a) 07
 - Explain boundary conditions between two perfect Dielectric materials. **(b)**

OR

- 07 Derive Poisson's and Laplace's equations. **O.4 (a) (b)** State Maxwell's equations in point form and explain physical significance of 07 the equations.
- 07 Q.5 State and Explain Ampere circuital law. **(a)**
 - A point charge, $Q = -10 \mu C$, is moving with a velocity of 6×10^6 m/s in a 07 **(b)** direction specified by the unit vector $\vec{a}_v = 0.5\vec{a}_x - 0.6\vec{a}_y + 0.2\vec{a}_z$. Find the magnitude of the vector force exerted on that moving charge by the field: (a) \overline{B} $= 2\bar{a}_x - 3\bar{a}_y + 5\bar{a}_z$ T; (b) $\bar{E} = 2\bar{a}_x - 3\bar{a}_y + 5\bar{a}_z$ kV/m; (c) \bar{B} and \bar{E} acting together.

OR

(a) Explain loss less propagation of sinusoidal voltage in transmission line. 07 Q.5 07 Write a short note on sources of EMI. **(b)**
