GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2015

Subject Code:2141005			Date:03/06/2015			
Su	bject	Name: Signals and Systems				
Time: 10:30am-1.00pm				Total Marks: 70		
Ins	tructio	ons:				
	1.	Attempt all questions.				
	2.	Make suitable assumptions wherev	ver necessary.			
	3.	Figures to the right indicate full m	arks.			
Q.1	(a)	For each of the following systems				07
-		i) $y(t) = x(t-2) + x(2-t)$				
		ii) $y(n) = nx(n)$				
		determine which of properties	"memoryless", "tim	e invariant",	"linear",	
		"casual" holds and justify your ans	wer.			

(b) Using the convolution integral to find the response y(t) of the LTI system with **07** impulse response $h(t) = e^{-\beta t}u(t)$ to the input $x(t) = e^{-\alpha t}u(t)$ for $\alpha = \beta$ and $\alpha \neq \beta$.

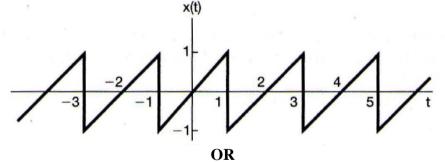
0

Q.2 (a) Determine the Fourier transform of each of the following signals: 07

i)
$$x(t) = \left\lfloor e^{-\alpha t} \cos \omega_0 t \right\rfloor u(t), \quad \alpha >$$

ii) $x[n] = \left(\frac{1}{2}\right)^{-n} u[-n-1]$

(b) Determine the Fourier series representations for the signal x(t) shown in figure 07 below.



(b) Let x(t) be a periodic signal whose Fourier series coefficients are

$$a_{k} = \begin{cases} 2, & k = 0\\ j(\frac{1}{2})|k|, & otherwise \end{cases}$$

Use Fourier series properties to answer the following questions:

- (a) Is *x*(*t*) real ?(b) Is *x*(*t*) even ?
- (c) Is $\frac{dx(t)}{dt}$ even ?
- Q.3 (a) Consider a causal and stable LTI system S whose input x[n] and output y[n] are 07 related through the second-order difference equation

$$y[n] - \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n].$$

1

07

- i) Determine the frequency response $H[e^{jw}]$ for the system S.
- ii) Determine the impulse response h[n] for the system S.
- (b) State and prove the following properties of the Fourier transform.
 - i) Time Shifting
 - ii) Time Scaling.

OR

- Q.3 (a) Determine the z-transform for the following sequences. Sketch the pole-zero 07 plot and indicate the ROC. Indicate whether or not the Fourier transform of the sequence exists.
 - i) $\delta[n+5]$ ii) $\left(\frac{1}{4}\right)^n u[3-n]$
 - (b) Determine the Laplace transform and the associated region of convergence and 07 pole zero plot for each of the following functions of time:
 - i) $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$
 - ii) $x(t) = \delta(t) + u(t)$
- Q.4 (a) Using the long division method, determine the sequence that goes with the 07

following z-transforms:
$$\mathbf{x}[\mathbf{z}] = \frac{1 - \left(\frac{1}{2}\right)z^{-1}}{1 + \left(\frac{1}{2}\right)z^{-1}}$$
 and $\mathbf{x}[\mathbf{n}]$ is right sided.

(b) Explain with example the properties and importance of LTI Systems. 07

OR

Q.4 (a) Consider a causal LTI system whose input x[n] and output y[n] are related by 07 the difference equation

$$y[n] = \frac{1}{4}y[n-1] + x[n].$$

Determine y[n] if $x[n] = \delta[n-1]$

- (b) Using the Partial fraction method, determine the sequence that goes with the 07 following z-transforms: $X(z) = \frac{3}{z \frac{1}{4} \frac{1}{8}z^{-1}}$ and x[n] is absolutely summable.
- Q.5 (a) List the properties of the region of convergence (ROC) for the z-Transform.07(b) Consider the signal07

$$x[\mathbf{n}] = \begin{cases} \left(\frac{1}{3}\right)^n \cos\left(\frac{\pi}{4}n\right), & n \le 0\\ 0 & n > 0 \end{cases}$$

Determine the poles and ROC for X[z].

OR

Q.5 (a) Compute and plot the convolution y[n] = x[n]*h[n] where $x[n] = \begin{cases} 1, & 3 \le n \le 8 \\ 0, & otherwise \end{cases} and$ $h[n] = \begin{cases} 1, & 4 \le n \le 15 \\ 0, & otherwise \end{cases}$

07

(b) Determine whether or not each of the following signals is periodic. If the signal 07 is periodic, determine its fundamental period.

i)
$$x(t) = [\cos(2t - \frac{\pi}{3})]^2$$

ii) $x[n] = \cos(n^2 \frac{\pi}{8})$
