GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2015

	Sub	ject Code: 2141905 Date:26/05/2015	
	Sub	ject Name: Complex Variables & Numerical Methods	
		e:10:30am-1.30pm Total Marks: 70	
	Instr	uctions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1		Do as Directed:	14
		(1) Solve the equation $z^2 + (2i-3)z + 5 - i = 0$.	
		(2) Discuss the differentiability of $f(z) = x^2 + iy^2$.	
		(3) Discuss the continuity of $f(z) = \begin{cases} \frac{z}{z}; & z \neq 0 \\ 0; & z = 0 \end{cases}$ at origin.	
		(4) Find the image of infinite strip $0 \le x \le 1$ under the transformation	
		 ω = iz +1. Sketch the region in ω - plane. (5) Find the second divided difference for the argument x =1, 2, 5 and 7 for the function f(x) = x². 	
		(6) Evaluate $\oint_C \frac{e^z}{(z+i)} dz$, where $C: z-1 = 1$.	
		(7) Expand $f(z) = \frac{z - \sin z}{z^2}$ at $z = 0$, classify the singular point $z = 0$.	
Q.2	(a)	(1) Find the analytic function $f(z) = u + iv$, if $u - v = e^x (\cos y - \sin y)$.	04
		(2) If $f(z) = u + iv$ is analytic in domain D then prove that	03
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \operatorname{Re}(f(z)) \right ^2 = 2 \left f'(z) \right ^2.$	
	(b)	Using theory of residue, evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx.$	07
		OR	
	(b)	Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region (i) $ z < 1$	07
		(ii) $1 < z < 2$ (iii) $ z > 2$.	
Q.3	(a)	(1)Evaluate $\int_{C} \bar{z} dz$ where C is along the sides of triangle having vertices $z = 0, 1, i$.	04
		(2) Determine bilinear transformation which maps the points $z = 0, i, 1$ into $\omega = i, -1, \infty$	03
	(b)	(1) Determine the points where $\omega = \left(z + \frac{1}{z}\right)$ is not conformal mapping. Also Find the image of	04
		circle $ z = 2$ under the transformation $\omega = \left(z + \frac{1}{z}\right)$.	
		(2) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+5}\right)^2 (z-2i)^n$.	03
		1	

OR

Q.3	(a)	(1) Using residue theorem, evaluate $\int_C \frac{e^z + z}{z^3 - z} dz$, where C: $ z = \frac{\pi}{2}$.	04
			0.3

(2) State Cauchy integral theorem. Evaluate
$$\int_C \left(\frac{3}{z-i} - \frac{6}{(z-i)^2}\right) dz$$
, where C : $|z| = 2$.

(b) (1) If
$$x + \frac{1}{x} = 2\cos\theta$$
, prove that (i) $x^n + \frac{1}{x^n} = 2\cos n\theta$ and 04

(ii)
$$\frac{x^{2n}+1}{x^{2n-1}+x} = \frac{\cos n\theta}{\cos(n-1)\theta}$$

(2) Determine and sketch the image of region $0 \le x \le 1, \ 0 \le y \le \pi$ under the **03**

(2) Determine and sketch the image of region $0 \le x \le 1$, $0 \le y \le \pi$ under the transformation $\omega = e^{z}$

x: 4 6 8 10 y: 1 3 8 16

Hence evaluate y for x=5.

(2) Evaluate $\int_{0}^{1} e^{-x^{2}} dx$ by using Gaussian Quadrature formula with n=3.

(**b**) Using the power method, find the largest eigen value of the $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.

OR

Q.4 (a) (1) Find the real root of the equation $x \log_{10}^{x} = 1.2$ by Regula false method (2) A river is 80 meters wide. The depth 'd' in meters at a distance x meters from one bank is given by the following table. Calculate the area of cross section of the river using Simpson's $\frac{1}{3}$ rd rule. x: 0, 10, 20, 30, 40, 50, 60, 70, 80

	x:	0	10	20	30	40	50	60	/0	80
	y:	0	4	7	9	12	15	14	8	7
Use Lagrange's metho	od to	find	poly	nomia	l of d	egree	three	for th	e data	a

y: 2 1 () -1

Hence find the value of x = 2.

(b)

Q.5	(a)	State diagonal dominant property. Using Gauss-Seidel method to solve	07
		6x + y + z = 105, 4x + 8y + 3z = 155, 5x + 4y - 10z = 65	07

(b) Using the Runge- Kutta method of fourth order, Solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.2 and x = 0.4 taking h=0.1

OR

Q.5 (a) Derive Euler's formula for initial value problem $\frac{dy}{dx} = f(x, y); y(x_0) = y_0$. Hence, use it find

the value of y for $\frac{dy}{dx} = x + y$; y(0) = 1 when x = 0.1, 0.2 with step size h=0.05. Also

Compare with analytic solution.

- (b) (1)Use Gauss elimination method to solve the equation x+4y-z=-5, x+y-6z=-12, 3x-y-z=4.
 - (2) Use Newton- Raphson method, derive the iteration formula for \sqrt{N} . Also find $\sqrt{28}$. 03

04

03

07

07