Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

Subject Code:2141906		ect Code:2141906 Dat	Date: 08/06/2015	
S	ubje	ect Name: Fluid Mechanics		
		•	tal Marks: 70)
Ir		ctions: 1. Attempt all questions.		
		 Attempt an questions. Make suitable assumptions wherever necessary. 		
		3. Figures to the right indicate full marks.		
Q.1	(a)	1 0		07
		1. Relative density		
		2. Kinematic viscosity3. Cavitation		
		4. Vapour pressure		
		5. Continuum		
		6. Compressibility		
		7. Capillary effect		
	(b)	Calculate the shear stress developed in oil of viscosity 1.2 poise, used the clearance between a shaft of diameter 12 cm and its journal bear rotates at 180 rpm and clearance is 1.4 mm.	_	07
Q.2	(a)	State and prove pascal's law with usual notations.		07
•	` '	Find the depth of point below sea water surface where the pressur	e intensity is	
		404.8 kN/m ² . The specific gravity of sea water is 1.03.		
	(b)	Derive the Hagen – Poiseuille equation for laminar flow in the circular OR	pipe.	07
	(b)	Derive the expressions for discharge over (i) Rectangular notch and notch.	ii) Triangular	07
Q.3	(a)	Derive expressions for total pressure and centre of pressure for vertic surface.	ally immersed	07
	(b)	A pipe AB branches into two pipes BC and BD. The pipe has diameted A, 20 cm at B, 15 cm at C and 10 cm at D. Determine the discharge velocity at A is 2.5 m/s. Also find the velocity at B and D, if the velocity m/s.	e at A if flow	07
		OR		
Q.3	(a)	Explain clearly: stream line; path line and streak line.		07
	(b)	Show that the distance between the meta-centre and centre of buoyan $BM = \frac{I}{\forall}$	cy is given by	07
Q.4	(a)	Explain the conditions of stability for a submerged and floating bodiagrams.	ody with neat	07
	(b)		4 m diameter. ly. The center ement and lie	07

- Q.4 (a) Distinguish clearly between:
 - 1. Rotational and Irrotational flow
 - 2. Laminar and Turbulent flow
 - (b) A 300 mm X 150 mm venturimeter is placed vertically with throat 250 mm above the inlet section conveys kerosene of density 820 kg/m 3 . The flow rate is 140 litre/sec. calculate the pressure difference between inlet and throat section. Take C_d = 0.97.
- Q.5 (a) Derive an expression for the loss of head due to friction in pipes. 07
 - (b) Prove that the velocity of sound wave in compressible fluid is given by $C = \sqrt{k\rho}$ 07

OR

- Q.5 (a) What are repeating variables? How are they selected for dimensional analysis?
 - (b) The frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given by,

 $T = D^5 N^2 \rho \, \varphi \, \left[\frac{\mu}{D^2 N \rho} \right]$

Prove this by Buckingham's π method.

07