Seat No.: ____

Q.1

Enrolment No.__ **GUJARAT TECHNOLOGICAL UNIVERSITY BE- Ist /IInd SEMESTER-EXAMINATION – MAY/JUNE - 2012**

Subject code: 110015 Date: 26/05/2012 Subject Name: Vector Calculus and Linear Algebra Time: 10:30 am – 01:30 pm **Total Marks: 70 Instructions:**

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Each question carry equal marks

Solve the following homogeneous system of linear equation by using Gauss (a) Jordan elimination

. .

$$2x_1 + 2x_2 - x_3 + x_5 = 0$$

- $x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$
 $x_1 + x_2 - 2x_3 - x_5 = 0$
 $x_3 + x_4 + x_5 = 0$

(b) Attempt the following:

		1	4	2	03
(i)	Find A^{-1} using row operation if A	2	5	3	
.,		1			

21

F-1

- 03 Solve the system of equation -2b + 3c = 1(ii) 3a+6b-3c=-26a + 6b + 3c = 5 by Gaussian elimination
- (c) Attempt the following: Find the rank of the matrix $A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 3 & 1 & 0 & 0 \\ -1 & 2 & 4 & 0 \end{bmatrix}$ in terms of 02 (i) datarminatas

(ii) Use Cramer's rule to solve
$$x + 2y + z = 5$$

 $3x - y + z = 6$
 $x + y + 4z = 7$

Q.2 (a) Define the rank and nullity. Find the rank and nullity of the matrix **05**

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

(b) Attempt following:
(i) If vector
$$r = x\hat{i} + y\hat{j} + z\hat{k}$$
 then show that $\nabla r^n = nr^{n-2}(vector r)$ 02

(ii) Prove that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$

Page 1 of 4

03

04

~~

- (C) Attempt following:
- Show that $f_1 = 1$, $f_2 = e^x$, $f_3 = e^{2x}$, form a linearly independent set of vectors in $c^2(-\infty, \infty)$ 02 (i)
- Check whether the set (ii) $W = \{a_0 + a_1x + a_2x^2 + a_3x^3where \ a_0 + a_1 + a_2 + a_3 = 0, a_i \in R\}$ is 02 subspace of $p_{\mathbf{R}}$

05 Show that the set of all 2×2 matrices of the form $\begin{bmatrix} \alpha & 1 \\ 1 & b \end{bmatrix}$ with addition Q.3 (a) defined by $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$ and scalar multiplication $k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}$ is a vector space.

- (b) Attempt following:
- Find a standard basis vector that can be added to the set 03 (i) $S = \{(1,0,3), (2,1,4)\}$ to produce a basis of \mathbb{R}^3
- Find the co-ordinate vector of p relative to the basis $S = \{p_1, p_2, p_3\}$ where $p = 2 x + x^2, p_1 = 1 + x, p_2 = 1 + x^2, p_3 = x + x^2$ (ii) 02
- Attempt following: (C)
- Find two vector in \mathbb{R}^2 with Euclidean Norm 1 whose inner product with 02 (i) (-3, 1) is zero.
- If $v_1, v_2, v_3, \dots, \dots, v_r$ are pairwise orthogonal vectors in \mathbb{R}^n then $\|v_1 + v_2 + \dots + v_r\|^2 = \|v_1\|^2 + \|v_2\|^2 + \dots + \|v_r\|^2$ (ii) 02

Q.4 (a) Let \mathbb{R}^3 have the Euclidean inner product. Use the Gram Schmidt process to 04 transform the basis $\{u_1, u_2, u_3\}$ into an orthonormal basis $u_1 = (1,0,0), u_2 = (3,7,-2), u_3 = (0,4,1)$

(b) Attempt following:

(i)	Find the least squares solution of the linear system AX=B given by			
	$x_1 - x_2 = 4$			
	$3x_1 + 2x_2 = 1$			
	$-2x_1 + 4x_2 = 3$ and find the orthogonal			
	Projection of B on the column space of A.			
(ii)	Let the vector space P_2 have the inner product	03		
	1			

$$\langle p,q \rangle = \int p(x)q(x)dx$$

(i) Find $||p||$ for $p = x^2$
(ii) Find $d(p,q)$ if $p = 1$ and $q = x$

- (C) Attempt following:
- Define the eiganvalue and eiganvector (i)

02

Find the eigan value of
$$A^3$$
 for $A = \begin{bmatrix} 1 & 3 & 7 & 11 \\ 0 & 1/2 & 3 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}$
Find k, 1 and m to make A, a Hermition matrix $A = \begin{bmatrix} 3 - 5t & 0 & mt \\ 3 - 5t & 0 & tt \\ t & 2 + 4t & 2 \end{bmatrix}$
Q.5 (a) Find bases for the eiganspace of $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
(b) Attempt following:
(i) Use Cayley -Harmitlon theorem to find A^{-1} for $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
(ii) Find a matrix P that diagonalizes $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
(c) Find a change of variable that will reduce the quadratic form $x_1^2 - x_2^2 - 4x_1x_2 + 4x_2x_3$ to a sum of squares and express the quadratic form in terms of the new variable.
Q.6 (a) Verify Green's theorem for the field $f(x,y) = (x - y)t + xt$ and the region Q4
R bounded by the unit circle $C: r(t) = (cost)t + (sint)t, 0 \le t \le 2\pi$
(b) Attempt following:
(i) Find the flux of $F = 4xzt - y^2 t + yzk$ outward through the surface of the cube cut from the first octant by the planes $x = 1, y = 1$ and $z = 1$
(ii) Determine whether $T: R^2 \to R^2$ is a linear operator
(1) $T(x,y) = (\sqrt[3]{x}, \sqrt[3]{y}) (2) T(x,y) = (x,0)$
(c) Attempt following:
(i) Find the derivative of $f(x,y) = x^2sin2y$ at the point $(1, \frac{\pi}{2})$ in the direction of $y = 3t - 4t$
(ii) Use matrix multiplication to find the image of the vector (-2, 1, 2) if it is rotated -45° about the y-axis.
Q.7 (a) Verify Stoke's Theorem for the hemisphere $5: x^2 + y^2 + z^2 = 9, z \ge 0$ its O4 bounding circle $C: x^2 + y^2 = 9, z = 0$ and the field $F = yt - xt$
(b) Attempt following:
(i) Consider the basis $S = \{v_1, v_2, v_3\}$ for $R^3, v_1 = (1, 2, 1), v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ and let $T: R^3 + R^3$ be the linear transform such that $T(v_2) = (1, 0), T(v_2) = (-1, 1), T(v_2) = (0, 1)$. Find a formula for $T(x_1, x_2, x_3)$ and us that formula to find $T(7, 13, 7)$.
Page 3 of 4

(ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_2\\-5x_1+13x_2\\-7x_1+16x_2\end{bmatrix}$$

Find the matrix for the transformation T with respect to the Basis $B = \{u_1, u_2\}$ for R^2 and $B' = \{v_1, v_2, v_3\}$ for R^3 where,

$$u_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

- (C) Attempt following:
- Determine whether the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, where 02 (i) T(x,y) = (x, y, x + y) is one one
- Find the standard matrix for the linear operator on \mathbb{R}^2 , an orthogonal (ii) 02 projection on the y-axis ,followed by a contraction with factor $k=\frac{1}{3}$

03