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Seat No.: _____                                                         Enrolment No.______ 
   

GUJARAT TECHNOLOGICAL UNIVERSITY 
BE SEM-III Examination May 2012 

Subject code: 130001 
Subject Name: Mathematics - III 

Date: 14/05/2012                           Time: 02.30 pm – 05.30 pm  
                                                                                      Total Marks: 70 
Instructions: 

1. Attempt all questions.  
2. Make suitable assumptions wherever necessary. 
3. Figures to the right indicate full marks. 

 
Q.1 (a) 
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 Attempt all quations:                                             

 Solve the differential equation xyyx
dx
dyxy +++=1  

Find the general solution of 08118 2
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Attempt the following equations:   
 
Determine the singular points of differential equation          

( ) ( ) 02322 2 =−+′+′′− yxyxyxx  and classify them as regular or irregular. 
Find half range cosine series for ( ) xexf =   in ( )1,0 . 
 
Find the fourier sine transform of  ( ) 0,32 >+= −− xeexf xx . 
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Q.2 (a) 
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Attempt the following quations: 
Find the Laplace transform of ( ) atttf sinh2=    

Find the Laplace transform of  ( )
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Find the inverse Laplace transform of      ( )( )152
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Attempt   the following quations : 
Solve the differential equation : ( ) ( ) 022 2222 =−++ xdyyxydxyx . 
Find the solution of differential equation 065 =+′−′′ yyy  with initial  condition  
( ) 21 ey =  and ( ) 231 ey =′  . 
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(3) Find the Laplace transform of  ( )
t

tcos1 −                                                              02 

  OR  
 (b) 
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Attempt the following quations: 
Using Laplace transform solve the differential equation          

tex
dt
dx

dt
xd t sin522

2
−=++   where ( ) 00 =x  and ( ) 10 =′x .                

 
Find the series solution of ( ) 091 2 =−′+′′+ yyxyx . 

 
03 
 
 
 

04 

   
Q.3 (a) 
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Attempt the following quations 

    Solve: tt eety
dt
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The Bessel equation of of order zero is 02'"2 =++ yxxyyx  then                                  
 (i) find the roots of the indicial equation 
(ii) show that one solution for 0>x  is ( )xJcy 00=  
                                  

where, ( ) ( )
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Find  fourier series for     ( )
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  OR  
Q.3 (a) 
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Attempt  the following quations 

Solve: xey
dx
dy

dx
yd

dx
yd x 3cos53
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 Solve: ( ) ( ) ( ) )( xy
dx
dyx

dx
ydx +=++++ 1logcos411 2

2
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Find the series solution using by Fobenius method 
     0=−′+′′ yyyx                                                                 
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 (b) Find fourier series for ( ) 22 xxxf −=  in the interval ( )3,0  . 04 
   

Q.4 (a) 
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(3) 

Attempt the following quations : 

Solve the differential equation  ( )2cos2232

2
xey

dx
dy

dx
yd x=+−  Solve the 

differential equation ( ) 222 43 xyXDDX =+−  given that 
( ) 11 =y  and   ( ) .01 =′y  

Evaluate :  ( ) ( ) dxxx 4
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Attempt the following quations: 
Prove that in usual notation   
 ( ) ( ) ( ) ( )xJxJxJxJ nnnn 22 24 +− +−=′′                                                          

Find Laplace transform of   (i) ( )23 −− tue t , (ii) udue u
t
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−∫                                    
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  OR 

Q.4 (a) 
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Attempt the following quations: 

Solve the differential equation ecx
dx
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yd cos3
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Attempt the following equation: 

Solve the differential equation  ( ) ( ) ( ) 10,00,42
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Q.5 (a) 

(1) 
 
 
 
 
 

(2) 

Attempt the following equation: 
Find half Range cosine series for sinx in (0,П ) and show that     
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 (b) A tightly stretched string with fixed end points x = 0 and x = L is initially 

Given the displacement  ⎟
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0 sin    If  it is released from rest from this  

position then find the displacement y 

   use   the equation 2
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  OR  
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Attempt the following equation: 
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Determine the solution of one dimensional heat equation 
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where  the boundary condition  

 
are ( ) ( ) 0,0,,0 >== ttLutu  and the initial condition is 
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( ) ,0, xxu =  , L being the length. ( )Lx <<0  
 (b) 

Solve the equation  2
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 for the condition of heat along 

a rod without            

radiation subject to the condition (i) 0=
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x
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for 0=x and tx =  
                                                                                            
(ii) 2xlxu −= at 0=t and for all x 
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