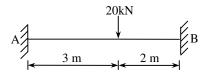
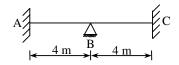
Seat No.:	Enrolment No.
Deal Ivo	Littothicht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY BE- IVth SEMESTER-EXAMINATION – MAY/JUNE- 2012 Subject code: 140603 Date: 2

Date: 29/05/2012


Subject Code: 140003 Subject Name: Structural Analysis-II				7/2012	
•	Fime: 10:30 am – 01:00 pm Total Mai				
Instr					
1.	Atten	npt all	questions.		
			ole assumptions wherever necessary.		
3.	Figur	es to th	ne right indicate full marks.		
Q.1	(a)	(i)	Explain carry over factor and distribution factor with illustration.	04	
		(ii)	Write advantages of fixed beam over simply supported beam.	03	
	(b)	Anal	yze the fixed beam shown in fig.(i) using moment area theorems.	07	
Q.2	(a)	all su	a continuous beam ABC as shown in fig.(ii), find the moments at apports, if support A rotates by 0.003 radian in clockwise direction he support B sinks by 5mm. $E = 2 \times 10^5 \text{ N/mm}^2$. $I = 8 \times 10^7 \text{ mm}^4$.	07	
	(b)		yze the continuous beam shown in fig.(iii) by Kani's method. OR	07	
	(b)	(i)	State and explain Castigliano's first theorem.	03	
		(ii)	Explain methods of prestressing.	04	
Q.3	(a)	Determine the support moment for a continuous beam as shown in fig.(iv) by moment distribution method. Also draw bending moment diagram.			
	(b)	Deriv	we the equation of fixed end moment developed due to U.D.L. of sity w applied on a fixed beam AB of length l . OR	04	
Q.3	(a)	Analyze the continuous beam shown in fig.(v) by slope deflection method. Draw shear force diagram and bending moment diagram.			
	(b)	Derive the equation for fixed end moment developed if support B of a fixed beam AB rotates by angle θ_B clockwise.			
Q.4	(a)	(i)	Differentiate prestressed concrete from reinforced concrete.	03	
		(ii)	Why higher grade concrete and high tensile strength steel wires are used in prestressed concrete?	04	
	(b)	A prestressed concrete beam of section 400×600 mm is subjected to a prestressing force of 2000kN at an eccentricity of 100 mm from bottom. It is subjected to a live load of 30 kN/m over a span of 12 m. Calculate extreme fibre stresses at top and bottom at mid-span at transfer and after the application of live load. Assume total loss of prestress to be 10%. Draw bending stress distribution diagrams. Take unit weight of concrete = 24 kN/m^3 .			
Q.4	(a)	What	t is an influence line diagram? Explain its importance in structural	04	
		analysis.			
	(b)		erate influence line diagram for R_B for a propped cantilever beam own in fig.(vi) by first principle. Also draw ILD for M_A and R_A .	10	


- Q.5 (a) Using method of consistent deformation, analyze the beam shown in fig.(vii). Draw shear force and bending moment diagram.

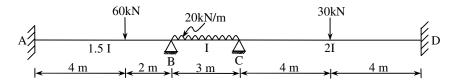
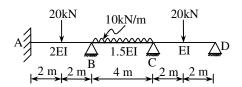
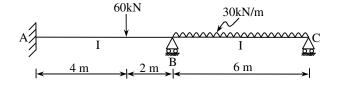
 EI = constant.
 - (b) Calculate fixed end moments for a beam as shown in fig.(viii) using Castigliano's theorem. Draw shear force diagram and bending moment diagram.

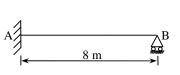
OR

- Q.5 (a) Determine the vertical deflection of joint C of the truss shown in fig.(ix) by unit load method. The cross-sectional area of each member is 400 mm^2 . $E = 2 \times 10^5 \text{ N/mm}^2$.
 - (b) Draw bending moment diagram for the beam shown in fig.(x). Use any convenient method.

fig.(i) Q-1(b)

fig.(ii) Q-2(a)


fig.(iii) Q-2(b)

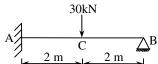


fig.(iv) Q-3(a)

fig.(v) Q-3(a) OR

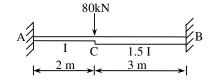
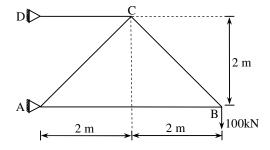



fig.(vi) Q-4(b) OR

fig.(vii) Q-5(a)

fig.(viii) Q-5(b)

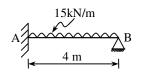


fig.(ix) Q-5(a) OR

fig.(x) Q-5(b) OR
