GUJARAT TECHNOLOGICAL UNIVERSITY BE- IVth SEMESTER-EXAMINATION - MAY/JUNE- 2012

BE- IVth SEMESTER-EXAMINATION – MAY/JUNE- 2012 Subject code: 143403 Date: 29/05/2012

	Tin Ins	oject Name: Fluid Mechanics and Machinery ne: 10:30 am – 01:00 pm tructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	
Q.1	(a) (b)	Define surface tension. Explain Surface tension on Liquid Droplet and Liquid Jet. Explain Buckingham's Π -theorem. How are the repeating variables selected for dimensional analysis?	07 07
Q.2	(a) (b)	Explain the terms: (i) Kinematic and Dynamic viscosity and (iii) Newton's Law of viscosity Define capillarity. Obtain an expression for capillarity rise of a liquid. OR	07 07
	(b)	What do you understand by the terms: Major energy loss and minor energy losses in pipes?	07
Q.3	(a) (b)	Derive Euler's equation of motion. How will you obtain Bernoulli's equation from it? The diameters of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/s. Determine also velocity at section 2. OR	07 07
Q.3	(a)	A main pipe divides into two parallel pipes which again forms one pipe. The length and diameter for first parallel pipe are 2000 m and 1.0 m respectively, while the length and diameter for second parallel pipe are 2000 m and 0.8 m. Find the rate of flow in each parallel pipe, if total flow in the main is 3.0 m ³ /s. The co-efficient of friction for each parallel pipe is same and equal to 0.005.	07
	(b)	Explain Laminar boundary layer, turbulent boundary layer and boundary layer thickness.	07
Q.4	(a) (b)	Define Similitude. Explain three types of similarities. Define Dimensionless numbers. Explain any three Dimensionless numbers. OR	07 07
Q.4	(a)	A Pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing at the rate of 700 litres/s under a head of 30 m. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.	07
	(b)	Explain main parts of a Radial Flow reaction turbine.	07
Q.5	(a) (b)	Explain working principle of Kaplan turbine. A centrifugal pump is to discharge 0.118m³/s at a speed of 1450 r.p.m. against a head of 25m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller. OR	07 07
Q.5	(a) (b)	Explain working principle of Rotary pump. Define Indicator diagram. How will you prove that area of indicator diagram is proportional to the work done by the reciprocating pump? ***********************************	07 07

1