GUIARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY BE- V th SEMESTER-EXAMINATION – MAY/JUNE - 2012							
Subject code: 150503 Date: 04/06/2012							
Subject Name: Chemical Engineering Thermodynamics-II							
Time: 02:30 pm – 05:00 pm Total Marks: 70							
Instructions:							
1. Attempt all questions.							
	2. Make suitable assumptions wherever necessary.						
3.	Figu	res to the right indicate full marks.					
Q.1	(a)	Define partial molar properties. Discuss various methods for evaluation of partial molar properties.	07				
	(b)	Define chemical potential. Discuss the effect of temperature and pressure on chemical potential.	07				
Q.2	(a)	i) Define excess properties.	02				
L.		ii) Define fugacity and fugacity coefficient of pure substance.	04				
		iii) What is ideal solution?	01				
	(b)	The experimental pressure volume data for benzene at 675K from a very	07				
	(0)	low pressure up to about 75 bar may be approximated by the equation	07				
		V = 0.0561 (1/P - 0.0046), where V is in m ³ /mol and pressure P is in					
		bar. What is the fugacity of benzene at 1 bar and 675K?					
		OR	07				
	(b)	Explain T-xy diagram for an immiscible system.	07				
Q.3	(a)	Discuss the consistency tests for VLE data by using Gibbs-Duhem equation.	07				
	(b)	Derive Van-Laar equations and Margules equations from basic Redlich Kister expansion.	07				
OR							
Q.3	(a)	Write a brief note on retrograde condensation.	07				
	(b)	i) Write Lewis-Randall rule and its significance.	03				
		ii) Define activity and activity coefficient.	04				
Q.4	(a)	Discuss the criteria of chemical equilibrium.	07				
-	(b)	Explain the effect of temperature and pressure on equilibrium constant. OR	07				
Q.4	(a)	Write a brief note on multireaction equilibria.	07				
	(b)	Derive the relation between standard free energy change and equilibrium constant from the first principle.	07				
Q.5		The water-gas shift reaction $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$ is carried out under the different sets of condition described below. Calculate the fraction of steam reacted in each case. Assume the mixture behaves as an ideal gas.	14				
		i) The reactants consist of 1 mol of H_2O vapor and 1 mol of CO. The temperature is 1100K and the pressure is 1 bar.					
		ii) Same as (i) excent that the pressure is 10 har					

- ii) Same as (i) except that the pressure is 10 bar.
- Same as (i) except that 2 mol of N_2 is included in the iii)

reactants.

- iv) The reactants are 2 mol of H_2O and 1 mol of CO. Other conditions are the same as in (i).
- v) The reactants are 1 mol of H_2O and 2 mol of CO. Other conditions are the same as in (i).
- vi) The initial mixture consists of 1 mol of H_2O , 1 mol of CO and 1 mol of CO_2 . Other conditions are the same as in (i).

Assume for the given reaction at 1100K, value of K = 1.

OR

- Q.5 (a) Acetic acid is esterified in the liquid phase with ethanol at 100° C and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH₃COOH(1) + C₂H₅OH(1) \rightarrow CH₃COOC₂H₅(1) + H₂O(1) If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH^{0}_{298} and ΔG^{0}_{298} for the above reaction are 13110 J and 9270 J respectively.
 - (b) Mixtures of n-Pentane (1) and n-Heptane(2) conform to ideal solution 07 behavior. The vapor pressures of pure components are adequately described by Antoines equation. Prepare P-x-y diagram at 70° C.

		, , , , , , , , , , , , , , , , , , , ,	
	Α	В	С
n-Pentane	6.87632	1075.780	233.205
n-Heptane	6.89386	1264.370	216.640
TT A A A			1

Use Antoines equation: $\log_{10}P = A - (B/(T+C))$ where pressure P is in Torr and temperature T is in ⁰C.
