Seat N	lo.:	Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE- V th SEMESTER-EXAMINATION – MAY/JUNE - 2012	
Subj	ect c	ode: 150703 Date: 04/06/2012	
•		Jame: Design and Analysis of Algorithms	
_		30 pm – 05:00 pm Total Marks: 70	
Insti			
		empt all questions.	
		ke suitable assumptions wherever necessary.	
		res to the right indicate full marks.	
Q.1	Ü	Answer the following.	14
	(i)	Compare Iterative and Recursive algorithm to find out Fibonacci series.	
		Explain why analysis of algorithms is important? Explain: Worst Case, Best Case	
	(ii)		
	(iii)	J C	
	(iv)	What is Principle of Optimality? Explain its use in Dynamic Programming Method.	
Q.2	(a)	Write a program/algorithm of Selection Sort Method. What is Complexity of the	07
	()	method?	
	(b)	Explain Quick Sort Method with example.	07
		OR	
	(b)	What is Divide and Conquer Technique? Give the use of it for Binary Searching	07
		Method.	
0.2	(a)	Define Minimal Spanning Tree(MST). Explain Krushkal's Algorithm to find MST	07
Q.3	(a)	with example.	U/
	(b)	Solve Making Change problem using Dynamic Programming. (denominations:	07
	()	d1=1,d2=4,d3=6). Give your answer for making change of Rs. 8.	
		OR	
Q.3	(a)		06
	4 \	node. (Greedy algorithm)	
	(b)	Solve the following Knapsack Problem using Dynamic Method. Write the equation	08
		for solving above problem. n = 5, W = 100	
		Object \rightarrow 1 2 3 4 5	
		Weight (w) \rightarrow 10 20 30 40 50	
		Value (v) \rightarrow 20 30 66 40 60	
Q.4	(a)	Explain Backtracking Method. What is N-Queens Problem? Give solution of 4-	07
ų.	(a)	Queens Problem using Backtracking Method.	07
	(b)	Explain Breadth First Traversal Method for Graph with algorithm.	07
		OR	
Q.4	(a)	Explain Chained Matrix Multiplication with example.	07
	(b)	Define: Acyclic Directed Graph, Articulation Point, Dense Graph, Sparse Graph.	04
0.5	(c)	Explain Min Max Principle.	03
Q.5	(a)	Explain in Breif: P. Problem, N.P. Problem, Heap Tree, Travelling Salesman Problem	08
	(b)	P Problem, NP Problem, Heap Tree, Travelling Salesman Problem Explain finite automata for string matching.	06
	(0)	OR	vu
Q.5	(a)	Explain Rabin- carp method for string matching and also give the algorithm.	07
-	(b)	What is Recursion? Give the implementation of Tower of Hanoi problem using	04

Recursion.

(c) Define: Big Oh, Big Omega and Big Theta Notation. 03

1