GUJARAT TECHNOLOGICAL UNIVERSITY BE- Vth SEMESTER-EXAMINATION – MAY/JUNE - 2012

Subject code: 151002

Subject Name: Engineering Electromagnetics

Time: 02:30 pm – 05:00 pm

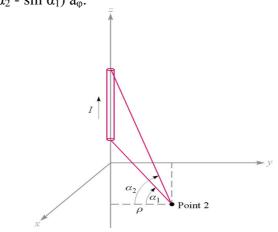
Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Given points are E (2, 5, 1), F (-1, 4, -2) and G (3, -2, 4). 07 Find: (i) A unit vector directed from E towards F.
 - (ii) The angle between R_{EF} and R_{EG} .
 - (iii) The scalar projection R_{EF} and $R_{\text{EG}}.$
 - (b) (i) Find the volume defined by $4 < \rho < 6$, $30^{\circ} < \phi < 60^{\circ}$, 07 2 < z < 5. (ii) What is the length of the longest straight line that lies entirely within the volume? (iii) Find the total area of the surface.
- Q.2 (a) Find Electric field intensity due to infinite line with 07 uniform line charge density ρ_L on z-axis
 - (b) Find E at P (1, 5, 2) in free space if a point charge of $6 \mu C$ 07 is located at Q(0, 0, 1), a uniform line charge $\rho_L=180 \text{ nC/m}$ lies along the z axis and a uniform sheet charge 25 nC/m² lies in the plane z = -1
 - OR
 - (b) Given the field $\overline{D} = 6\rho \sin(\phi/2) \overline{a}_{\rho} + 1.5\rho \cos(\phi/2) \overline{a}_{\phi} C/m^2$. 07 Evaluate both sides of the divergence theorem for the region bounded by $\rho = 2$, $0 < \phi < 180^\circ$, 0 < z < 5.
- Q.3 (a) Derive equation to find Energy stored in the field of a 07 system of charges
 - (b) The region y < 0 contains a dielectric material for which 07 $\varepsilon_{R1}=2.5$, while the region y > 0 is characterized by $\varepsilon_{R2}=4$. Let $\overline{E}_1 = -30 \ \overline{a}_x + 50 \ \overline{a}_y + 70 \ \overline{a}_z$ V/m Find (i) D_{N2} (ii) D_{t2} (iii) \overline{D}_2 (iv) θ_2

OR

- Q.3 (a) Find Capacitance between two concentric spheres using 07 Laplace Equation.
 - (b) Given a point of $200\pi \mathcal{E}_0$ C at (3, -1, 2), a line charge of **07** $40\pi \mathcal{E}_0$ C/m on the x-axis and a surface charge of $8\mathcal{E}_0$ C / m² on the plane x = -3, all in free space. Find the potential at P (5, 6, 7) if V = 0 at Q (0, 0, 1).

adal Marilan 70


Date: 04/06/2012

Total Marks: 70

- Q.4 (a) Define the term "curl". Also explain the point form of 07 "Ampere's circuital law".
 - (b) Write the statement of Stoke's theorem. 07 Evaluate both sides of Stoke's theorem for the field $\overline{H} = 6xy \ \overline{a}_x - 3y^2 \ \overline{a}_y A / m$ and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of dS be \overline{a}_{z} .

OR

- Q.4 (a) Prove that for a differential current loop which carries 07 current I in a given magnetic field, the torque on that loop is given by $d\overline{T} = d\overline{m} \times \overline{B}$.
 - (b) As shown in the figure below, the finite length current 07 element is on the z axis. Using Bio–savart law show that $\overline{H} = I / 4\pi\rho (\sin\alpha_2 \sin\alpha_1) \overline{a}_{\omega}$.

- Q.5 (a) Derive Maxwell's four equations in point form. 07 (b) Explain Skin effect in detail. A steel pipe is constructed of 07 a material for which $\mu_r = 200$ and $\sigma = 5 \times 10^6$ mho/m. The outer and inner radii 8 and 6 mm respectively and the length is 80 m. If the total current carried by the pipe is $2\cos 10^4 \pi t$ A, find (i) the skin depth (ii) the effective resistance OR
- Q.5 (a) Derive Maxwell's four equations in integral form. (b) A lossy dielectric is characterized by $\mathcal{E}_r = 2.5$, $\mu_r = 4$, and $\sigma = 10^{-3}$ mho/m at 10MHz. Let $\overline{E}_s = 20 \text{ e}^{-yz} \overline{a}_x$ V/m and find (i) α (ii) η (iii) \overline{H}_s
