Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE- Vth SEMESTER-EXAMINATION - MAY/JUNE - 2012

Subj	ect c	ode: 151003 Date: 02/06/2	2012
_		ame: Integrated Circuits and Applications	
		30 pm – 05:00 pm Total Marks	s: 70
	ructi		
_		empt all questions.	
2.		ke suitable assumptions wherever necessary.	
3.	_	res to the right indicate full marks.	06
Q.1	(a) (b)	Explain all the three open loop Op-Amp configurations. Consider the Sallen Key low pass circuit for gain K=1, which is to be	00 04
	(0)	designed to realize a pair of poles at the angles $\pm \Psi$ with respect to negative	V -1
		real axis of S plane. If $R_1=R_2=1$, show that $Cos\psi = \sqrt{\frac{C_1}{C_2}}$.	
	(c)	Draw the high frequency model of an Op-Amp and Obtain the expression	04
	(•)	for the open loop gain as a function of frequency.	-
Q.2	(a)	Define slew rate of an Op-Amp .What are its causes?	03
	(b)	Derive the expression for the closed loop voltage gain, input resistance and	07
		output resistance of voltage series feedback amplifier.	
	(L .)	OR	07
	(b)	Implement an integrator using Op-Amp. Obtain the expression for the output voltage V ₀ .Sketch the output waveform for an input square	07
		waveform. Show the frequency response of an ideal and a practical	
		integrators	
	(d)	Define the following parameters of Op-Amp:	04
	, ,	(i) Input bias current	
		(ii) Common Mode Rejection ratio	
		(iii) Supply Voltage rejection ratio.	
		(iv) Output offset voltage	
Q.3	(a)	Explain the working of a Voltage to Current converter with floating load.	07
	. ,	Illustrate the application of this circuit as a Zener diode tester.	
	(b)	Show how Op-Amp can be used as an averaging, summing amplifiers using	04
	()	noninverting configuration.	0.2
	(c)	State the properties of Butterworth filter OR	03
Q.3	(a)	Explain the application of Op-Amp as :	07
Q.J	(a)	(i) Peaking Amplifier (ii) Schmitt Trigger	07
	(b)	Explain the operating principle of a Phase Locked Loop.	07
Q.4	(a)	Explain with a neat circuit diagram and waveforms, the operation of a	04
		monostable multivibrator using 555 timer.	
	(b)	Determine the following for the low pass specifications below:	08
		α_{max} =0.5 dB, α_{min} = 30 dB. ω_{p} =1000 rad/s, ω_{s} =2330 rad/s.	
		(a) The order of the filter 'n'(b) S plane location of the poles	
		(c) Q of each pole.	
		(d) ω_0	
	(c)	Name the different types of voltage regulators	02

Q.4	(a)	Draw the circuit diagram of triangular waveform generator and explain the operation with necessary equations and waveforms.	07
	(b)		07
Q.5	(a)	Draw and explain the block diagrams of (i) Operational amplifier (ii) 555 timer	08
	(b)	For an astable multivibrator using 555 Timer, R_A =4.7K Ω , R_B =1K Ω ,and C=.05 μ F,determine the positive pulse width, negative pulse width and the free running frequency.	06
Q.5	(a)	Using LM 317, design an adjustable voltage regulator to satisfy the specifications : V_0 =10 to 15 volts, I_0 =0.5A, Choose R_1 =200 Ω . Neglect I_{Adj}	04
	(b)	Draw the Deliannnis –Friend circuit and derive the transfer function. Express ω_0 , bandwidth and Q in terms of circuit parameters.	06
	(c)	Discuss the attenuation characteristics of ideal and practical low pass and bandpass filters	04
