Seat N	lo.: _	Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY BE- V th SEMESTER-EXAMINATION - MAY/JUNE - 2012		
Subject code: 151903 Date: 0 Subject Name: Fluid Power Engineering			04/06/2012 l Marks: 70	
Q.1	(a)	Prove that head loss due to friction is equal to one third of total head inlet for maximum power transmission through nozzle.	07	
	(b)	Explain the following terms: (1) Major losses (2) Minor losses and (3) Equivalent pipe	07	
Q.2	(a)	A jet delivers water at the rate of 60 liters per second with velocity 30 m/s. The jet strikes tangentially on the vane moving in the direction of the jet with the velocity of 15 m/s. The vane is so shaped that if stationary it would deflect the jet through an angle 50°. Calculate: (1)	07	
	(b)	angle made by absolute velocity at outlet and (2) work done per sec. Show that in case of jet striking the flat plates mounted on wheel, the efficiency will be maximum when the tangential velocity of wheel is half of the jet.	07	
		OR		
	(b)	A jet of water of 30 mm diameter, strikes on the hinged rectangular plate weight 100 N at the center of the plate. The velocity of the jet is 8 m/s. Calculate: (1) angle through which the plate will swing, and (2) force must be applied at the lower edge of the plate in order to keep the plate vertical.	07	
Q.3	(a)	Explain the following terms with reference to water turbines. Give expression of each efficiencies. (1) Hydraulic efficiency (2) Mechanical efficiency and	07	
	(b)	(3) Overall efficiency The following data is related to Pelton wheel turbine (1) Heat at the base of the nozzle=80 m (2) Diameter of the jet = 100 mm (3) Discharge of the nozzle=0.30m³/s (4) Power at the shaft=206 kw and (5) Power absorbed in mechanical resistance= 4.5 kw Determine: (1) power lost in nozzle and (2) power lost due to hydraulic resistance in the runner. OR	07	
Q.3	(a)	Why governing of water turbine is required? Explain governing of any	07	
-	` ,	one hydraulic turbine with neat sketch.	0=	
	(b)	Francis turbine designed to develop 160 kw working under a head 10 m and running at 200 rpm. The hydraulic losses in turbine are 15% of available energy. The overall efficiency of turbine is 80%. Assume flow	07	

ratio=0.94 and speed ratio=0.25. Calculate: (1) guide blade angle and

runner vane angle at inlet and (2) diameter and width at inlet.

Q.4	(a)	Enlist the various types of impeller used in centrifugal pump and explain any one from it with a neat sketch.	07
	(b)	Find the power required to drive a centrifugal pump which delivers 0.04 m ³ /sec of water to a height of 20m through a 15 cm diameter pipe and 100 m long. The overall efficiency of the pump is 70% and co efficient of friction f =0.015 used in Darcy's equation.	07
Q.4	(a)	Give classification of Reciprocating pump. Draw neat sketch of single	07
	(b)	acting reciprocating pump Write a short note on Submersible pump.	07
Q.5	(a)	Derive an expression for the optimum value of the intercooler pressure in a two stage reciprocating air compressor for perfect inter cooling condition.	07
	(b)	A centrifugal air compressor has a pressure ratio of 4:1 with an isentropic efficiency 88% when running at 14000 rpm and including air at 25° C. Curved vanes at inlet give the air a pre-whirl of 18° to axial	07
		direction at all radii and the mean diameter of eye is 245 mm. The absolute air velocity at inlet is 120 m/s. Impeller tip diameter is 580 mm. Calculate slip factor.	
		OR	
Q.5	(a)	With a suitable sketch explain the working principle of an axial flow compressor. Draw the stage velocity triangles.	07
	(b)	Explain working of Differential hydraulic accumulator with neat sketch.	07
