GUJARAT TECHNOLOGICAL UNIVERSITY BE- Vth SEMESTER-EXAMINATION - MAV/IIINE - 2012

BE- V th SEMESTER-EXAMINATION – MAY/JUNE - 2012						
Subj	ect co	Date: 06/06/201	12			
Subject Name: Machine Design-I						
•	e: 02:3	Total Marks: '	70			
Instr	uctio	ons:				
1.	Atter	npt all questions.				
		e suitable assumptions wherever necessary.				
3.	Figu	es to the right indicate full marks.				
Q.1	(a)	(i) Explain the importance of Wahl's stress factor in spring des	sign.	07		
X	()	(ii) State and explain the factors affecting selection of spring m		•••		
	(b)		ita:	07		
		Minimum load = 100 N				
		Maximum load = 225.6 N				
		Compression of spring = 10 mm Permissible shear stress for spring material = 440 Mpa				
		Spring end – square and ground ends				
		Modulus of rigidity for spring material = 0.80×10^5 MPa				
Q.2	(a)		1 . 1	07		
	(b)	(ii) Explain the difference between single plate and multiplate of The following specification refers to a centrifugal clutch:	clutch.	07		
	(b)	Power to be transmitted = 15 kW		07		
		No. of shoes = 4				
		Angle subtended by the shoe at centre = 60°				
		Inner radius of drum = 150 mm				
		Distance of C.G. of shoe from the centre of the spider $=12$	0 mm			
		Coefficient of friction the shoe and drum = 0.25				
		Running Speed = 900 r.p.m.				
		Shoe engagement starts at Speed = $\frac{3}{4}$ th of the Running S	peed			
		Permissible pressure intensity = 0.10 MPa				
		Find (i) capacity of the clutch Mass of each shoe and (ii) si	ze of each shoe.			
		OR				
	(b)	Design a single plate clutch considering uniform wear crite effective	erion and	07		
		one pair of contacting surfaces from the following specific	cation:			
		Power to be transmitted = 18.5 kW				
		Speed = 750 r.p.m.				

- Outer diameter = 2 times internal diameter
- Permissible pressure for the lining = 1 MPa
- Coefficient of friction = 0.20
- Permissible stress for shaft material = 45 MPa

Q.3 (a) (i) Explain the different types of stresses induced in a belt with neat sketch. (ii) Write a note on belt materials. (b) The following data refers to flat belt drive 07

(b) The following data refers to flat belt drive Power to be transmitted = 15 kW Motor speed = 1440 r.p.m. Speed of driven pulley = 480 r.p.m. Density of belt material = 950 Kg/ m^3 Centre distance between two pulleys = 810 mm belt speed = 20 m/sec Modulus of elasticity for belt material = 100 MPa Coefficient of friction=0.35 Permissible stress for belt material = 2.25 Mpa Belt thickness = 5 mm Calculate (i) pulley diameters (ii) length and width of the belt

OR

Q.3	(a)	(i) Explain the step by step procedure used for chain drive selection.(ii) State the different belt tension adjustment devices and explain one of them in detail with neat sketch.	07
	(b)	V-belt drive has the following specification: Power to be transmitted = 30 kW Motor speed = 1440 r.p.m. Machine pulley speed =480 r.p.m. Centre distance between two pulleys = 1 m Approximate Allowable belt speed = 20 m/sec Coefficient of friction=0.20 Density of belt material = 1000 Kg/ m ³ Cross sectional area of V belt = 700 mm ² Find the no. of v-belts required and pulley diameters neglecting the slip of the belt.	07
Q.4	(a)	State the different equations used for thick cylinder design with their	07
	(b)	conditions and limitations. Design a journal bearing from the following data: Radial load = 20 kN diameter of journal =100 mm Speed of journal =900 r.p.m. oil SAE 10 with viscosity at 55° C = 0.017 kg/m-sec ambient temperature = 15.5° C maximum bearing pressure = 1.5 Mpa permissible rise in oil temperature = 10° C heat dissipation coefficient = 1232 W/m ² / ⁰ C L/D ratio = 1.6 Design parameter ZN/p = 28 clearance ratio = 0.0013 specific heat of oil = 1900 J/kg/ ⁰ C	07
		OR	
Q.4	(a)	 (i) State and Explain the factors affecting the selection of a suitable antifriction bearing. (ii) Explain the effects of the L/D ratio and C/D ratio parameters on the performance of journal bearing. 	07
Q.4	(b)	A hydraulic press has the following specifications: Capacity = 80 kN Fluid pressure = 16 MPa Stroke = 80 mm Permissible tensile stress for pillar and ram = 75 MPa Permissible stress for C.I. cylinder = 30 MPa Distance between the center line of pillars = 800 mm	

Distance between top supporting platform and

bottom of top plate when the ram is in the down most position = 800mm Design the ram, cylinder and pillars.

- Q.5 (a) Explain Goodman's and Soderberg's diagram with neat sketches. 07 07
 - (**b**) Answer the following (any TWO)
 - (i) Explain the wear considerations in design.
 - (ii) Explain the important considerations to be considered in casting design.
 - (iii)Explain Hertz contact stresses in detail.

OR

- Q.5 (a) (i) What do you meant by standardization? Explain the use of standardization in 07 design. (ii) Explain the assembly considerations in machine design.
 - (b) The following data refers to a transmission shaft : [torsional moment that varies from = -100 Nm to + 600 Nm. ultimate tensile strength = 630 Mpa yield strength = 360 MPa, stress load correction factor = 0.6size correction factor = 0.85Surface finish factor = 0.8. reliability factor = 0.897factor of safety = 2Calculate the shaft diameter using distortion energy theory of failure.

07