Seat No : _

Enrollment No: _____

GUJARAT TECHNOLOGICAL UNVERSITY BE- VIth SEMESTER-EXAMINATION – MAY- 2012

Subject code: 160606 Subject Name: Geotechnical Engineering-II Time: 10:30 am – 01:00 pm

Date: 22/05/2012

Total Marks: 70

Instructions : (1) All questions are compulsory.

- (2) Figures to the right indicate the marks.
- (3) Use of Programmable calculator is strictly prohibited.
- (4) Draw neat sketch wherever necessary.
- Q.1 (a) Explain Plate load test.
 - (b) A square footing 2m x 2m carries a uniformly distributed load of 314 kN/m². 07 find the intensity of vertical pressure at a depth of 6 m below a point 0.5 m inside each of the two adjacent side of footing.
- Q.2 (a) A square footing 2.5 m X 2.5 m is built on a homogeneous bed of sand of density 07 19 kN/m³ having an angle of shearing resistance of 36°. The depth of foundation is 1.5 m below the ground surface. Calculate the safe load that can be applied on the footing with a factor of safety of 3. Take bearing capacity factors as $N_c=27$, $N_q=30$, $N_{\gamma}=35$.
 - (b) Differentiate between General shear failure and Local shear failure with neat 07 sketch.

OR

(b) Enlist factor affecting the bearing capacity and explain any two in detail.

07

07

- Q.3 (a) Write about piles accordingly to method of installation and their load carrying 07 characteristics.
 - (b) A 40 cm square pre-cast RCC pile is driven by 9 m into a sandy bed. The 07 standard penetration test results, performed on this ground are given below

Depth(m)	1.5	3	4.5	6	7.5	9	10.5	12
SPT-N	4	6	12	12	20	24	35	39
values								

Compute the factor of safety available if 1100 kN of compressive load is applied on this pile.

Q.3 (a) A load test has been carried out on a 30 cm dia RCC precast pile already driven 07 into the ground. The results obtained are tabulated below :

inte me Bround. The results counted are useduited seron .						
Load (t)	40	80	120	140	160	170
Penetration(mm)	3	5	10	21	32	37.5

(a) Determine the allowable compressive load in kN that you would recommend for a general case.

(b) Determine the allowable load(kN) if the settlement rate at twice the design load is restricted to 1/40 cm/t. Also determine the allowable load if the pile is not allowed to settle more than 2 cm under normal load and 5 cm under twice the load.

(b) In a 16 pile group, the pile diameter is 0.4 m and c.c spacing of piles in the 07 square group is 1.5 m. If $c_u=50 \text{ kN/m}^2$, determine whether the failure would occur as block failure or when the piles act individually. Neglect bearing at the

tip of the pile. All piles are 12 m long. Take m=0.7 for shear mobilization around each pile. Also determine the safe load on this group.

- Q.4 (a) Explain about earth pressure at rest.
 - (b) Calculate the total active thrust on a vertical wall 5 m high, retaining a sand of 07 density 1.7 gm/cc for which $\Phi = 35^{\circ}$, the surface of the sand is horizontal and the water-table is below the bottom of the wall.

OR

- Q.4 (a) A counterfort wall of 10 m height retains non-cohesive back fill. The void ratio 07 and angle of internal friction of the back fill respectively are 0.7 and 30°, in the loose state, and they are 0.40 and 40° in the dense state. Calculate and compare active earth pressure in both the states. Take specific gravity of soil grains as 2.7.
 - (b) Enlist graphical methods of determination of lateral earth pressure and explain 07 any one in detail.
- Q.5 (a) Discuss about stability analysis of Infinite slopes for $c-\Phi$ soils. 07
 - (b) A 8 m deep cutting has side slopes of $1\frac{1}{2}H:1V$. The soil was tested and found to 07 have the following properties c= 24.5 kN/m², e =0.8, Φ =14°. Determine the factor of safety w.r.t. cohesion, against failure of the slope, when water level in the cur rises up to full height. Given G = 2.7 and for β =34° stability number (N) are

Φ	Ν
6°	0.122
7°	0.116
14°	0.074
	OR

- (a) Explain swidish circle method of stability analysis.
- (b) A 12 m high embankment is inclined on sides at angle of 30° to the horizontal. If 07 the shear strength parameters of the soil are given as $c = 15 \text{kN/m}^2$ and $\Phi=20^\circ$, find the factor of safety available against slope failure. The unit weight of the soil is also known as equal to 18kN/m^3 . Stability number (Sn) = 0.025

07

07