		Enrolment No GUJARAT TECHNOLOGICAL UNIVER BE- VII th SEMESTER-EXAMINATION – MAY/JUN	RSITY
Subject code: 171701 Subject Name: Control System Design Time: 02:30 pm – 05:00 pm			Date: 24/05/2012 Total Marks: 7(
Q.1	(a)		07
	(b)	design. With necessary equations write a note on observer design.	07
Q.2	(a)		07
	(b)	Consider a process given by $\dot{x} = Ax + Bu$ and $y = cx$	07
		Where $A = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$; Design a	
		controller using internal model design to track a step input. OR	
	(b)	Discuss importance of robust control system and sensitivity of controlled system.	07
Q.3	(a)	A process is given by $G(s) = \frac{1}{(s+1)^2}$. If cascade controller	07
		$G_c(S)=1$ then steady state error is 50% and settling time (2% tolerance band) is 3.2 second for a step input. Optimum coefficients of the characteristic equation for ITAE are given by	
		equation $s^3 + 1.75\omega_n s^2 + 2.15\omega_n^2 s + \omega_n^3$. Design PID controller to obtain an optimum ITAE performance for a step input and a settling time less than 0.5 second.	
	(b)	Write a note on the role of digital computers in control system design and application	07
Q.3	(a)	OR Describe optimal control system with control energy	07
	(b)	considerations. With example discuss design of digital controllers using root locus in the z-plane.	07
Q.4	(a)	Check the controllability of the system given with state matrices as	07
		$A = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ -6 & 11 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 9 & 2 \end{bmatrix}$	
	(b)	Find the transfer function for the system matrices given as $A = \begin{bmatrix} -4 & -1 \\ 3 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \end{bmatrix}$	07

Q.4 (a) Check the observability of the system given with state matrices as

$$A = \begin{bmatrix} 3 & 6 & 0 \\ 3 & 2 & 1 \\ 4 & 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

- (b) Define state variable and state model. If a system has one input, one output and three states, find out the dimensions of the various matrices of the state model.

$$G(s) = \frac{0.25K}{s(s+1)(0.25s+1)}$$
OR

Q.5 Design a suitable compensator in time domain for the system defined by

$$G(j\omega) = \frac{k}{(j\omega)^2}$$

Satisfying specifications like

Settling time $\leq 3 \sec (5\% \text{ tolerance band})$ Peak Overshoot for step input $\leq 20\%$

07