Date: 29/05/2012

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE- VIIth SEMESTER-EXAMINATION – MAY/JUNE- 2012

Subject code: 171905

Subject Name: Industrial Tribology

Time: 02:30 pm – 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) State the different theories of friction. Explain any one of them which is 07 most widely accepted with neat sketch.
 - (b) Define absolute and kinematic viscosity. Also define viscosity index. 07 Discuss the effect of temperature on absolute viscosity of the lubricating oil.
- Q.2 (a) Explain the air/gas bearing in detail.
 (b) State the different functions of the lubricants. Explain grease as lubricant in detail.
 07

OR

- (b) Why additives are added in lubricants? Give the names of few additives 07 and their functions. Classify the lubricants.
- Explain the EHD (elasto hydrodynamic) lubrication in detail. State the 07 0.3 (a) different examples of it. (b) Explain the wear of metals and non-metals. 07 OR Q.3 (a) Explain the diagnostic maintenance of tribological components and 07 considerations in IC engines and automobile parts. (b) Explain the following (any ONE) : 07 1. Measurement of wear 2. Recycling of used oils Derive Reynold's equation for 3-D hydrodynamic lubrication. Also state 07 0.4 (a) the assumptions made in this derivation. (b) Explain oil whip and whirl. 07 OR **Q.4** (a) Derive Petroff's equation for lightly loaded bearing. 07 The following data refers to a 360° hydrodynamic bearing: **(b)** 07 Journal diameter = 40 mmBearing length = 20 mmJournal speed = 1500 r.p.m.Radial load = 6.5 kN

Radial clearance = 0.007 mm Oil viscosity = 25 cP

Find the minimum oil film thickness, friction coefficient, oil flow and power lost in churning.

l/d	<u>h₀/c</u>	ธั	CFV = f(r/c)	FV = Q /rcnl
1/2	0.4	0.319	8.10	4.85
	0.6	0.779	17	4.29
	0.8	2.03	40.9	3.72

Q.5 (a) State and explain general requirements of good bearing materials.
 (b) The following data refers to a hydrostatic thrust bearing:
 07

Thrust load = 500 kN	Shaft speed = 720 r.p.m.
Recess diameter = 300 mm	Shaft diameter = 500 mm
Film thickness = 0.15 mm	Viscosity of lubricant = 29.3 cP
Calculate the supply pressure, flow	requirement in lit/min and power loss
in pumping.	

OR

Q.5	(a)	Write short note on the following (any ONE) :	07
		1. Selection of bearing.	
		2. Lubrication systems.	
	(b)	Explain the optimum design of hydrostatic step bearing.	07
