Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER 1st / 2nd (OLD) EXAMINATION WINTER 2016

-		Code: 110008 Date: 24/01/2017	
Tim	Subject Name: MATHS-1 Time:10:30 AM TO 1:30 PM Total Marks: 7 Instructions:		
	1. 2.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	(i) If $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ for $-1 \le x \le 1$ then find $\lim_{x \to 0} f(x)$	03
		(ii) Verify Lagrange's Mean Value Theorem for the function $f(x) = x^2-2x+4$ on [1,5].	04
	(b)	(i) Using L'hospital Rule, Evaluate (1) $\lim_{x \to 0} \frac{1}{x} (1-x\cot x)$ (2) $\lim_{x \to 0} (\cot x)^{sinx}$	04
		(ii) Find Taylor's series generated by $f(x) = \frac{1}{x}$ at $a = 2$	03
Q.2	(a)	(i) Trace the curve $r = a(1+\cos\theta)$; $a > 0$ (ii) Use the Fundamental Theorem of the integral calculus to find $\frac{dy}{dx}$ if $y = \int_x^5 3t \sin t dt$.	04 03
	(b)	(i) Discuss the convergence of the integral $\int_0^\infty \frac{1}{x^2} dx$.	04
		(ii) Find the absolute maximum and minimum value of $f(x) = x^{\frac{2}{3}}$ on the interval [-2,3].	03
Q.3	(a)	Discuss the convergence of the following series: (i) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+1}$ (ii) $\sum_{n=1}^{\infty} \frac{2n^2+3n}{5+n^5}$	06
	(b)	(i) Test the convergence of series $\sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{n^2+n+1}\right)$ and if it is convergent then find its sum.	04

04

(ii) Does the sequence whose nth term is

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$
 converge? If so, then find $\lim_{n \to \infty} a_n$

$$f(x, y) = \frac{xy}{x^2 + y^2} \quad ; \quad (x, y) \neq (0, 0) \\ = 0 \qquad ; \quad (x, y) = (0, 0)$$

(ii) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = sin2u$ 04

(ii) Find
$$\frac{dw}{dt}$$
 if $w = xy + z$, $x = cost$, $y = sint$, $z = t$ 03

Q.5 (a) (i) If
$$x = r\cos\theta$$
, $y = r\sin\theta$ then evaluate $\frac{\partial(x,y)}{\partial(r,\theta)}$ 03

(ii) Evaluate
$$\iint_R x \, dA$$
, where R is the region bounded by the **04**
Parabolas $y^2 = 4x$ and $x^2 = 4y$

(b) (i) Evaluate :
$$\int_0^2 \int_{y-2}^{2y} xy \, dx \, dy$$
 by changing order of integration. 04
(ii) Evaluate: $\int_0^\pi \int_0^{a(1+\cos\theta)} r \, dr \, d\theta$ 03

Q.6 (a) (i) Find the area enclosed by lemniscate
$$r^2 = a^2 cos 2\theta$$
 04

(ii) Evaluate
$$\iiint (x - 2y + z) dx dy dz$$
 over the region R, 03
where R: $0 \le x \le 1$, $0 \le y \le x^2$, $0 \le z \le x + y$

(b) (i) Find the volume bounded by cylinder $x^2 + y^2 = 4$ and the plane **04** y + z = 3 and z = 0(ii) Evaluate $\int_0^1 \int_0^1 dx dy$ by changing to polar co-ordinates. **03**

Q.7 (a) (i) Find the divergence and curl of
$$\vec{v} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 - y^2z)\hat{k}$$
 04 at (2,-1,1)

(ii) Evaluate $\int_c \overline{F} \cdot d\overline{r}$ along the parabola $y^2 = x$ between the points **03** (0,0) and (1,1) where $\overline{F} = x^2 \hat{\imath} + xy \hat{\jmath}$

- (b) (i) Find the directional derivatives of $\emptyset = xy^2 + yz^2$ at the point (2,-1,1) 04 in the direction of the vector $\hat{i} + 2\hat{j} + \hat{k}$.
 - (ii) Evaluate : $\oint_c [(x^2+2y) dx + (4x + y^2)] dy$ by Green's theorem where C is **03** the boundary of the region bounded by y = 0, y = 2x and x + y = 3.