GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER 1st / 2nd (OLD) EXAMINATION WINTER 2016

Subject Code: 110009 Date: 20/01/2017

Subject Name: Mathematics-II Time:10:30 AM TO 1:30 PM

Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) 1. Solve the following system by Gauss elimination method: 03

$$2x_1 + 2x_2 + 2x_3 = 0, -2x_1 + 5x_2 + 2x_3 = 1, 8x_1 + x_2 + 4x_3 = -1$$

2. Solve the system 04

$$2x_1 - x_2 = \lambda x_1$$
, $2x_1 - x_2 + x_3 = \lambda x_2$, $-2x_1 + 2x_2 + x_3 = \lambda x_3$ for x_1, x_2, x_3 in the two cases $\lambda = 1$ and $\lambda = 2$.

(b) 1. Solve the system 04

$$-2y + 3z = 1$$
; $3x + 6y - 3z = -2$; $6x + 6y + 3z = 5$ by Gauss-Jordan method.

- Find the rank of the matrix $\begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3-4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$.
- Prove that forthe matrix $A = \begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$, iA is a skew 01 Hermitian matrix.
- Q.2 (a) 1. Find the vectors in \mathbb{R}^2 with Euclidean norm 1 whose Euclidean inner 0.3 product with (3,-1) is zero.
 - State Cauchy-Schwarz inequality in Rⁿ. Verity Cauchy-Schwarz inequality for the vectors u = (0, -2, 2, 1) and v = (-1, -1, 1, 1).
 Also, find ||u v||.
 - (b) 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a multiplication by . Determine whether T has an 02 inverse. If so, find $T^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ where $A = \begin{bmatrix} 1 & 4 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

2. Show that the linear transformation
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T(x,y) = (2x - 6y, -5x + 15y)$ is not invertible.

3. Determine the algebraic and geometric multiplicity of the matrix
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$$

- Q.3 (a) 1. Let R^3 have the Euclidean inner product. Transform the basis $u_1 = (1, 1, 1), u_2 = (1, -2, 1), u_3 = (1, 2, 3)$ into an orthogonal basis basis the Gram-Schmidt process.
 - 2. Find the least square solution of the linear system AX = b given $byx_1 x_2 = 4$, $3x_1 + 2x_2 = 1$, $-2x_1 + 4x_2 = 3$ and find orthogonal projection of b on the column space of A.
 - (b) 1. Verify Caley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} and A^{4} .
 - 2. Reduce the quadratic form $Q(x, y, z) = 3x^2 + 3z^2 + 4xy + 8yz + 8xz$ 04 to canonical form by linear transformation.
- Q.4 (a) 1. Show that $S = \{1 x x^3, -2 + 3x + x^2 + 2x^3, 1 + x^2 + 5x^3\}$ is 03 linearly independent in P_3 .
 - 2. Find the inverse of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by Gauss-Jordan elimination method.
 - (b) 1. Show that $S = \{\begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \}$ is a basis for M_{22} .

 - 3. Obtain the matrix of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by the 02 formula $T(x_1, x_2) = (x_1 + x_2, 2x_1 x_2, 7x_2)$ with respect to the standard basis $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2, v_3\}$.
- Q.5 (a) 1. Find the eigenvalues and eigenvectors of thematrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.

- 2. Find matrix P that diagonalizes the matrix $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$. Also determine $P^{-1}AP$.
- (b) 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ the linear transformation defined by 04

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \left(\begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix}\right).$$
 Find the matrix for the transformation

Twith respect to the basis $B_1 = \{u_1, u_2\}$ for R^2 and $B_2 = \{v_1, v_2, v_3\}$ for

$$R^3, \text{ where } u_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

- 2. Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 where $v_1 = (1, 1, 1)$, 03 $v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$ and let $T: R^3 \to R^3$ be the linear operator such that $T(v_1) = (2, 1, -4)$, $T(v_2) = (3, 0, 1), T(v_3) = (-1, 5, 1)$. Find a formula for $T(x_1, x_2, x_3)$ and use the formula to find T(2, 4, -1).
- Q.6 (a) 1. Let V be the set of all ordered pairs of real numbers with vector addition defined as $(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2 + 1, y + y_2 + 1)$ show that first five axioms for vector addition are satisfied. Clearly mention the zero vector and additive inverse.
 - 2. State Dimension Theorem and verify that for the given matrix s 03 $A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$
 - (b) 1. Let $S = \{(2,0,0), (0,2,0)\}$ show that S is not a basis for \mathbb{R}^3 even if it 03 is linearly independent.
 - 2 If $V = \{(x,y,z)/x 3y + 4z = 0, x,y,z \in R\}$, prove that V is a subspace of a vector space of R^3 .
- Q.7 (a) 1. Consider a basis $S = \{b_1, b_2\}$ for R^2 , where $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Suppose v in R^2 has the coordinate vector $[v]_s = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find v.
 - 2. Let V be the space spanned by $v_1 = sinx$, $v_2 = cosx$, $v_3 = x$. Show 01 that $S = v_1, v_2, v_3$ forms a basis for V.

Find a basis for column-space of the matrix
$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ -2 & -4 & 4 & -7 \\ 1 & 2 & 1 & 2 \end{bmatrix}$$
.

(b) 1. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be the linear operator defined by 04

$$\begin{split} T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) &= \begin{bmatrix}x_1-2x_2\\-x_2\end{bmatrix} \text{ and } s_1 = \{v_1,v_2\} \text{ and } s_2 = \{w_1,w_2\} \text{ where } \\ v_1 &= \begin{bmatrix}1\\0\end{bmatrix}, v_2 &= \begin{bmatrix}0\\1\end{bmatrix}, w_1 &= \begin{bmatrix}2\\1\end{bmatrix}, w_2 &= \begin{bmatrix}-3\\4\end{bmatrix}. \end{split}$$

- (i) Find the matrix T w.r.t. the basis s_1
- (ii) Find the matrix T w.r.t. the basis s_2
- 2. Define: Symmetric matrix, Skew-Symmetric Matrix, Diagonal matrix 03
