GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER 1st / 2nd (OLD) EXAMINATION WINTER 2016

Subject Code: 110014 Date: 24/0			./2017	
Ti	Subject Name: Calculus Time:10:30 AM TO 1:30 PM Total Marks: ' Instructions:		0	
	1. 2.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)(1)	Test the convergence of the sequence $\{2 - (-1)^n a\}$	03	
	(2)	Show that the sequence $\{u_n\}$ whose n th term is $u_n = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ where $n \in N$	04	
	(b)	is monotonic increasing and bounded. Is it convergent? Expand $\tan^{-1}(x+h)$ in power of h and hence, find the value of $\tan^{-1}(1.003)$ up to 5 places of decimal.	07	
Q.2	(a)(1) (2)	Find the expansion of $\log(1 + x)$ Determine whether the following series converge or diverge. Find the sum of	03 04	
		the series if it converges. $\sum_{n=1}^{\infty} \left[\tan^{-1} n - \tan^{-1} (n+1) \right]$		
	(b)	Test the convergence of the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} +$	07	
Q.3	(a)(1)	Evaluate : $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$	03	
	(2)	Find the linearization of $f(x, y, z) = x^2 - xy + 3 \sin z$ at the point (2,1,0)	04	
	(b)	Trace the curve $y^{2}(a + x) = x^{2}(b - x)$	07	
Q.4	(a)(1)	If $z = e^{xy}$, $x = t \cos t$, $y = t \sin t$, find $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$	03	
	(2)	Find the equation of tangent plane and normal line to the surface $x^2 yz + 3 y^2 = 2 xz^2 - 8 z$ at the point (1,2,-1).	04	
	(b)	Change the order of integration and hence evaluate $\int_{0}^{4a^{2}\sqrt{ax}} \int_{x^{2}} xy dydx$	07	
Q.5	(a)(1)	Find $\lim_{(x,y)\to(0,0)} \frac{xy}{y^2 - x^2}$	03	
	(2)	If $u = \tan^{-1}\left(\frac{x}{y}\right)$ where $x^2 + y^2 = a^2$ find $\frac{du}{dx}$.	04	
	(b)	State Euler's theorem. If $z = x^n f\left(\frac{y}{x}\right) + y^{-n} f\left(\frac{x}{y}\right)$ prove that	07	
		$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^{2} z$		
			1	

- **Q.6** (a) Find the maxima and minima of the function $x^3 + y^3 63(x + y) + 12xy$ 07
 - (b) Evaluate $\iint (x^2 + y^2) dxdy$ over the region bounded by the lines y=4x, x+y=3, 07 y=0, y=2.
- Q.7 (a) Evaluate $\iiint z^2 dxdydz$ over the region common to the sphere 07 $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 2x$
 - (b) Using the method of cylindrical shell, find the volume of the solid obtained by 07 rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.
