Seat No.:				
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (OLD) • EXAMINATION – WINTER 2016		
Su	bject	Code: 140001 Date: 18/11/20	16	
Tiı	Subject Name: Mathematics-4 Time:02:30 PM to 05:30 PM Total Marks: 70			
11151	2.	Attempt all questions. Make suitable assumptions wherever necessary.		
	3.	Figures to the right indicate full marks.		
Q.1	(a)	(i) Let $z_1 = 2 + 3i$ and $z_2 = 4 - 5i$, find the value of $\frac{z_2}{z_1}$ in the form	03	
		x + iy. (ii) Find the Principal value of $(1 + i)^{(1-i)}$.	04	
	(b)	(i) Let $w = f(z) = 2iz + 6\overline{z}$. Find the real and imaginary part of w and the value of $f(z)$ at $z = \frac{1}{2} + 4i$.	03	
		(ii) Determine the analytic function whose real part $u = \frac{x}{x^2 + y^2}$.	04	
Q.2	(a)	(i) Find and sketch the sets in the complex plane given by $ z + 1 = z - 1 $.	03	
		(ii) Show that $f(z) = \begin{cases} \frac{Im(z^2)}{ z } & ; z \neq 0\\ 0 & ; z = 0 \end{cases}$ is continuous at $z = 0$.	04	
	(b)	(i) Evaluate $\int_{C} Re(z)dz$, where C the shortest path from 0 to $1 + i$.	03	
		(ii) Find the bilinear transformation that maps the points $1, -1, -i$ onto $1, -1, i$.	04	
	(b)	(i) Integrate $f(z) = Re(z)$ counterclockwise around the unit circle.	03	
	(0)	(i) Find all fixed points of $w = \frac{z+2}{z+1}$.	03 04	
Q.3	(a)	(i) Find and sketch the image of $ z > 1$ under the transformation $w = 3z$.	03	
		(ii) Evaluate $\oint_C \frac{4-3z}{z^2-z} dz$, counterclockwise around any simple closed path such that 0 and 1 are inside <i>C</i> .	04	
	(b)	(i) Find the Maclaurin's series of the function $f(z) = e^{-2z}$.	03	
		(ii) Find the Laurent series for $f(z) = \frac{-2z+3}{z^2-3z+2}$ with center 0, $ z < 1$. OR	04	
Q.3	(a)	(i) Find and sketch the image of $x = -1$ under the transformation $w = \frac{1}{x}$.	03	
		(ii) Using residue, evaluate $\oint_C \frac{1}{z^3 - z^4} dz$ clockwise around the circle $C: z = \frac{1}{2}$.	04	
	(b)	(i) Expand $\frac{1}{(z+1)(z+3)}$ in Laurent series for $ z < 1$.	03	
		(i) Find the residues at poles of $f(z) = \frac{50z}{z^3 + 2z^2 - 7z + 4}$.	04	
Q.4	(a)	Using Newton Raphson method find a real root of the equation $x^3 - 5x + 3 =$	07	
	(b)	0 correct to four decimal places. Take $x_0 = 2$. Using Newton's divided difference formula, compute $f(0.8)$ and $f(0.9)$ from	07	
	(U)	f(0.5) = 0.479, f(1.0) = 0.841, f(2.0) = 0.909. OR	U/	
Q.4	(a)	Using Langrage interpolation formula find the value of $ln9.2$ from	07	
		x 9.0 9.5 11	1	

<i>lnx</i> 2.1972	2.2513	2.3979
-------------------	--------	--------

- (b) Find the positive solution of f(x) = x 2sinx = 0 by secant method correct 07 to four decimal places, start from $x_0 = 2, x_1 = 1.9$.
- Q.5 (a) Apply the Runge-Kutta's fourth order method to the initial value problem 07 y' = x + y; y(0) = 1, choosing h = 0.2 and find y(0.2).
 - (b) Solve the following linear system of equations by Gauss sidel method. 07 5x + y + 2z = 19; x + 4y - 2z = -2; 2x + 3y + 8z = 39

Q.5 (a) Evaluate
$$\int_0^1 e^{-x^2} dx$$
 (Take $n = 10$) by

- (i) Trapezoidal rule
- (ii) Simpson's 1/3 rule.
- (b) Use Euler method to find y(0.6) given that y' = 1 2xy; y(0) = 0, take 07 h = 0.2.

07