Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(OLD) • EXAMINATION - WINTER 2016

Subject Code:141903

Subject Name: Engineering Thermodynamics

Time:02:30 PM to 05:00 PM

Total Marks: 70

03

Date:19/11/2016

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of steam table is permitted
- Q.1 (a) Define control volume. What is the difference between system and control 04 volume?
 - (b) Explain thermodynamic equilibrium.
 - (c) Explain first law of thermodynamics for a closed system undergoing a change 07 of state and derive energy equation $Q = W + \Delta U$
- Q.2 (a) Show that all reversible engines operating between the two constant 07 temperature thermal reservoirs have the same efficiency.
 - (b) A heat pump is used to heat the house in winter. A house requires 50 kJ/s heat
 07 for heating in winter which is delivered by heat pump from outside air. Work required to operate the heat pump is 8 kW. Calculate co-efficient of performance of heat pump and heat extracted from the outside.

OR

- (b) In case of heating the gas at constant volume, show that the change in entropy is given 07 by $s_2 - s_1 = c_v \log_e \left(\frac{T_2}{T_1}\right)$
- Q.3 (a) Explain the concept of decrease in available energy when heat is transferred 07 through a finite temperature difference with the aid of temperature-entropy diagram.
 - (b) Expansion of gas takes place in a turbine 8 bar, 550°C to 1 bar, 350°C. The 6 kJ of heat per kg is rejected to the surroundings during process. Surrounding temperature and pressure are 20°C and 0.98 bar respectively. Calculate per kg of gas (i) change of availability (ii) maximum work (iii) irreversibility

OR

- Q.3 (a) Explain Joule-Thomson coefficient and the temperature of inversion 07
 - (b) Using Clausius–Claperyon's equation, estimate the enthalpy of vaporization at 07 200°C using the following data.

$$v_g = 0.1274 \text{ m}^3/\text{kg}, v_f = 0.001157 \text{ m}^3/\text{kg}, \left(\frac{\text{dp}}{\text{dT}}\right) = 32 \text{ kPa/K}$$

- Q.4 (a) Explain the effect of following on the efficiency of Rankine cycle.
 (i) superheating of steam (ii) Turbine inlet steam pressure (iii) condenser pressure
 - (b) A steam is supplied to steam turbine at pressure 20 bar and degree of superheat 07 to be 137.6°C. The exhaust pressure is 0.08 bar and expansion of steam takes place isentropically. Calculate the thermal efficiency of the cycle.

Q.4 (a) Show that the air standard efficiency of Brayton cycle is given by

$$\eta = 1 - \frac{1}{\left(r_p\right)^{\frac{\gamma-1}{\gamma}}}$$

 r_p is pressure ratio and γ is ratio of specific heats

- (b) The air standard efficiency of an Otto cycle is 60% and $\gamma = 1.5$. Calculate the 07 compression ratio of the cycle.
- Q.5 (a) Define the followings
 - (i) Dalton's law
 - (ii) Gibbs-Dalton law
 - (iii) Amagat's law
 - (iv) Apparent molecular weight
 - (v) Gas constant
 - (vi) Adiabatic mixing of gases
 - (vii) Avogadro's law
 - (b) A vessel of 6 m³ capacity contains two gases A and B in proportion of 45% and 55% respectively at 30°C. If the value of R for the gases is 0.288 kJ/kgK and 0.295 kJ/kgK. If the total weight of the mixture is 2 kg, calculate
 - (i) The partial pressure
 - (ii) The total pressure
 - (iii) The mean value of R for the mixture

OR

- Q.5 (a) Describe the method of determination of heating value of solid fuel using Bomb 07 calorimeter.
 - (b) A coal sample gave the following analysis by weight, Carbon 85%, Hydrogen 07 6%, oxygen 6% and remaining incombustible. Determine the minimum weight of air required per kg of coal for chemically correct composition.

07