GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V • EXAMINATION - WINTER 2016

Subject Code: 151301									Date: 30/11/2016		
Subject Name: Elements of Chemical Engineering Time: 10:30AM – 01:00PM Instructions:									Total Marks: 70		
	2.	Attempt all questions Make suitable assum Figures to the right in	ptions w			essa	ry.				
Q.1	(a)	1									0'
	(b)	Arrhenius Equation. Describe a method to find the rate constant and order of reaction from t power law type rate equations.									0′
Q.2	(a) (b)	Differentiate between elementary and non-elementary reactions. Define: (i) Homogeneous Reaction, (ii) Heterogeneous Reaction. OR									0 0
	(b)	Give the classification of types of reactions.									0
Q.3	(a) (b)	Differentiate between plug flow reactor and mix flow reactor. Write performance equation of Batch, CSTR and Plug flow reactor, explain the each variable used in the equations.									
Q.3	(a) (b)	OR Discuss the types of ideal reactors. The reaction $A \rightarrow B$ is carried in a batch reactor. The initial concentration is $CA_0 = 2.0$ mol/litre. The conversion is 90%. Find the time required if the reaction is, (i) First order reaction, $k = 0.01$ s ⁻¹ , (ii) Second order reaction, $k = 0.01$ L mol ⁻¹ s ⁻¹ .									
Q.4	(a)	In a catalytic decomposition of hydrogen peroxide the concentration changes (with time following first order kinetics as follows:									
		Time, hr		0		10		20		30	
		Concentration, mol/	litre	25.	4	13	.4	7.08		3.81	
	<i>(</i> -)	Determine the rate constant with correct unit.									
	(b)	State the difference between step input and pulse input for RTD measurement.									
Q.4	(a) (b)										
		$T(^{0}C)$	319		330	1	354		78.5	383	
		$k (cm^3/gmol - sec)$	522		755		1700	4()20	5030	
	Calculate the activation energy.										
Q.5	(a) (b)	Explain transition state theory. Draw a neat sketch of plug flow reactors in parallel with proper explanation. OR									
Q.5	 (a) Explain: i) Space time, ii) Space velocity (b) Write a short note on temperature dependency from thermodynami 										0 0
			:	****	*****	***					