GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V • EXAMINATION - WINTER 2016

	1. 2. 3. (a) (b) (a) (b) (b)	 Figures to the right indica (i) Explain the difference to suitable example. (ii) If the approximate solidat the most 5% . Find the which the exact value of the Show that the Newton-Rapper Find all the roots of the equipmethod. Start with the initial solidation of the solidation of the solidation of the solidation. 	te full marks. between Trunc lution of a pro- range of valu the solution li- phson method uation $x^3 + 3$ ial factor x^2	blem is 20.14 es correct upt e. is 2 nd order co $x^2 + 3x + 2 =$ + 0.9x + 1.1	with relative o four decima nvergent. 0 using Lin-	error of ll digits in						
Q.2	(b) (a) (b)	 suitable example. (ii) If the approximate sol at the most 5% . Find the which the exact value of the Show that the Newton-Rapper Find all the roots of the equipmethod. Start with the initial Find all the roots of the equipmethod. 	Lution of a pro- range of valu the solution li phson method uation $x^3 + 3$ ial factor x^2	blem is 20.14 es correct upt e. is 2^{nd} order co $x^2 + 3x + 2 =$ + 0.9x + 1.1	with relative o four decima nvergent. 0 using Lin-	error of ll digits in						
Q.2	(a) (b)	at the most 5% . Find the which the exact value of t Show that the Newton-Rap Find all the roots of the eq method. Start with the initi Find all the roots of the eq	range of valu the solution li phson method uation $x^3 + 3$ ial factor x^2	es correct upt e. is 2^{nd} order co $x^2 + 3x + 2 =$ + 0.9x + 1.1	o four decima nvergent. : 0 using Lin-	l digits in						
Q.2	(a) (b)	Find all the roots of the eq method. Start with the initi Find all the roots of the eq	uation $x^3 + 3$ ial factor x^2	$x^2 + 3x + 2 = + 0.9x + 1.1$	= 0 using Lin-	Bairstow						
Q.2	(b)	method. Start with the initial Find all the roots of the equilation of the equilatio	ial factor x^2 .	+ 0.9x + 1.1	-	Bairstow						
		Find all the roots of the eq										
	(b)		0	Find all the roots of the equation $x^3 - 6x^2 + 5x + 12 = 0$ using Graeffe's method squaring thrice.								
		OR Solve the non linear system of equations $8xy = 1$, $2x^2 + 8y^2 = 1$ using Newton Raphson method. Starting with $x_0 = 0.4$ and $y_0 = 0.3$.										
Q.3	(a)	Express $f(x) = x^4 - 12x^3 + 24x^2 - 30x + 9$ and its successive differences in factorial notation and hence show that $\Delta^5 f(x) = 0$										
	(b)	Obtain the cubic spline for	-		following data							
		x 1	2	3	4							
		y 1	2	-	11							
Q.3	(a) Fit a relation of the type $R = a + bV^2$ using least squares method to following data.											
		V 10	20	30	40	50						
	<i>.</i>	R 8	10	15	21	30						
	(b)	Derive the Recurrence relation $T_2(x)$, $T_3(x)$ and $T_4(x)$.	ation for Cheby	yshev polynon	nals and using	g it define						
Q.4	(a)	Use Taylor's series method to obtain approximate value of y at $x = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$. Compare the numerical solution with exact solution.										
	(b)											
04		du	•	$d^2 y$								
Q.4	(a)	(a) Evaluate (i) $\frac{dy}{dx}$ at $x = 0.75$ and (ii) $\frac{d^2y}{dx^2}$ at $x = 1.50$ for the data										
		<i>x</i> 0.30	0.75	1.00	1.23	1.30						
	(b)	$\begin{array}{c c} y & 0.13 \\ \hline \text{Evaluate } \int_0^1 e^{x^2} dx \text{ using} \end{array}$	0.42	1.00	1.95	2.35						

Q.5 a) Calculate the first four moments of the following data about assumed mean 35 and 07 about the mean

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
No. of	8	12	20	30	15	10	5
students							

(b) Ten contestants in a singing contest are ranked by three judges in the following order 07

<u> </u>					,					
Contestant	1	2	3	4	5	6	7	8	9	10
No										
Judge 1	1	6	5	10	3	2	4	9	7	8
Judge 2	3	5	8	4	7	10	2	1	6	9
Judge 3	6	4	9	8	1	2	3	10	5	7

Using rank correlation find out that which pair of judges have common approach to singing.

OR

Q.5 (a) In a partially destroyed laboratory record of an analysis of correlation data the 07 following results only are legible:

Variance of X = 9

Regression equations 8X - 10Y + 66 = 0

$$40X - 18Y = 214$$

- Find (i) The mean values of X and Y
 - (ii) Coefficient of correlation between X and Y
 - (iii) Standard deviation of Y
- (b) Calculate 4-yearly moving averages for the following data

07

Year	Production	Year	Production		
2005	464	2010	540		
2006	515	2011	557		
2007	518	2012	571		
2008	467	2013	586		
2009	502	2014	612		
