GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (OLD).EXAMINATION – WINTER 2016

i	Subject Code: 160906 Date: 25/10/20		
,	Time: Instruct	ct Name: Theory of ElectromagneticsTotal Marks: 7010:30 AM to 01:00 PMTotal Marks: 70ions:Total Marks: 701. Attempt all questions.Attempt all questions.2. Make suitable assumptions wherever necessary.Figures to the right indicate full marks.	
Q.1	(a)	Explain dot product and cross product of two vectors. If the vector field $G=y a_{x}-2.5x a_{y}+3 a_{z}$ and the point Q (4,5,2), find the vector component of G at Q in the direction of $a_{N}=1/3$ ($2a_{x}+a_{y}-a_{z}$).	07
	(b)	Transform the vector field \mathbf{G} =(xz/y) \mathbf{a}_x into spherical coordinates and Give the Cartesian coordinates of the point C (4.4, -115 ⁰ , 2)	07
Q.2	(a)	Define potential difference V. calculate V_1 if point P_1 is located at P_1 (-2, 3, -1) and V=5V at (2,0,4) for a 15 nC point charge is at the origin in free space.	07
	(b)	Derive the expression for electric field intensity at a point (ρ , Φ , z) due to an infinite line charge density ρ_L along z-axis.	07
	(b)	$\label{eq:order} \begin{array}{l} \textbf{OR} \\ \text{State and explain Guass's law.} \\ \textbf{D} = 8xyz^4 \textbf{a}_x + 4x^2z^4 \textbf{a}_y + 16 \; x^2yz^3 \; \textbf{a}_z \; pC/m^2 \; \text{in free space. Find the total electric flux} \\ \text{passing through the rectangular surface } z = 2 \; , \; 0 < x < 2 \; , \; 1 < y < 3 \; \text{ in the } \textbf{a}_z \text{-direction.} \end{array}$	07
Q.3	(a)	Define electric dipole & dipole moment. Derive expressions for V and E for an electric dipole at a distant point P.	07
	(b)	State and explain Biot- Savert's law.	07
Q.3	(a)	OR For the potential field V=2x ² y -5z and point P(-4, 3, 6), find at P i) the potential, ii) the electric field intensity E , iii) the direction of E and iv) the volume charge density ρ_v .	07
	(b)	Derive Poisson's and Laplace's equation.	07
Q.4	(a)	State and explain Lorentz force equation on charge particle. A negative point charge Q= - 40nC is moving with a velocity of 6×10^6 m/s in a direction_specified by the unit vector $\mathbf{a}_{\mathbf{v}} = -0.48 \ \mathbf{a}_{\mathbf{x}} - 0.6 \ \mathbf{a}_{\mathbf{y}} + 0.64 \ \mathbf{a}_{\mathbf{z}}$. Find the vector force exerted on the moving particle by the field $\mathbf{B} = 2 \ \mathbf{a}_{\mathbf{x}} - 3 \ \mathbf{a}_{\mathbf{y}} + 5 \ \mathbf{a}_{\mathbf{z}}$ mT.	07
	(b)	Write short note on magnetic materials.	07

OR

Q.4	(a)	Write Maxwell equation in point form and integral form.	07
	(b)	State and explain Stoke's theorem.	07
Q.5	(a)	Derive boundary conditions for perfect dielectric materials.	07
	(b)	Evaluate both sides of the divergence theorem for the field $D = 2xy a_x + x^2 a_y C/m^2$ and the rectangular parallelepiped formed by the planes x=0 and 1, y=0 and 2, and z=0 and 3.	07
		OR	
Q.5	(a)	Explain applications of numerical techniques in engineering.	07

(b) Calculate **E** at P (1, 1, 1) caused by four identical 3- nC charges located at P₁ (1, 1, 0), $P_2(-1,1,0), P_3(-1, -1, 0), and P_4 (1, -1, 0).$
