Sea	ıt No.:	Enrolment No	-
Su Tii	bject me: 1 truction 1.	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII(OLD) • EXAMINATION – WINTER 2016 Code: 170902 Date: 21/11/2016 Name: Electrical Machine Design-I 10:30 AM to 01:00 PM Total Marks: 70 ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Determine the main dimensions of core and window for a 500KVA, 66000/400V, 50Hz, single phase core type, oil immersed, self cooled transformer. Assume: flux density =1.2T. Current density =2.75 A/mm², window space factor=0.32,Volt/turn=16.8,type of core: cruciform, height of window=3 times window width. Also calculate the number of turns and cross-sectional area of the conductors used for primary and secondary windings.	07
	(b)	Transformer A and B are of same type and have equal current density, flux density, frequency and window space factor. Their linear dimensions are in the ratio of 2:1. Prove that their losses will be in the ratio of 8:1.	07
Q.2	(a)	A 3 phase 15 MVA, 33/6.6 KV, 50 Hz, star/delta core type oil immersed natural cooled transformer gave the following results during design calculations. Length of core + two times heights of yoke= 250cm, centre to centre distance of cores= 80cm, outside diameter of the HV winding = 78.5cm,iron losses =26 Kw, copper losses in LV & HV windings =41.5 KW & 57.% Kw respectively . calculate the main dimension of the tank, temperature rise of the transformer without cooling tubes and numbers of tubes for a temperature rise not exceed 50°c.comment upon whether tubes can be used in a practical case for such a transformer. If not suggest the change.	07
	(b)	Derive output equation of $3 - \Phi$ Transformer. Write the significance of constant 'K'.	07
		OR	
	(b)	Explain technical reasons for: (1) Low flux density is selected for yoke of a three phase transformer. (2) Circular coils are preferred in transformer winding. (3) Tapings are usually provided on h.v. side of transformer.	07
Q.3	(a)	Estimate the leakage reactance of concentric winding in core type transformers clearly stating the assumptions used.	07
	(b)	Write a Short Note on : Duty Cycle	07

(a) Explain effect of change in frequency on losses, voltage & leakage impedance

Explain how following points affect the dimensions of slots in a d.c.

(b) Explain steps to design shunt field winding of a d.c. machine

OR

of transformer

machine armature design. (1) Excessive flux density

(2) Flux pulsations(3) Eddy current losses(4) Mechanical issues

Q.3

Q.4

(a)

07

07

07

	(b)	Explain types of mechanical forces are developed in transformer windings?	07
		OR	
Q.4	(a)	Discuss factors to be considered while deciding the length of air gap in the design of a D.C. machine.	07
	(b)	Explain how pole body height is fixed while designing field system of a d.c. machine.	07
Q.5	(a) (b)	Explain various factors affecting selection of number of poles for D.C. machine Briefly explain the principles of core design of a current transformer OR	07 07
Q.5	(a)	Explain:	07
	(u)	a. Significance of mitred joints in transformer.b. Design difference between power & distribution transformer	07
	(b)	Define specific electric and specific magnetic loading. Also state advantage sand disadvantages of these loadings.	07