Seat M	No.:	Enrolment No.		
Subject Name: Advanced Engineering Mathematics				
			MARKS	
Q.1	1	Answer the following one mark questions Find $\left[\left(\frac{1}{2}\right)\right]$.	14	
	2 3 4	State relation between beta and gamma function. Define Heaviside's unit step function. Define Laplace transform of f (t), $t \ge 0$.		
	5	Find Laplace transform of $t^{\frac{-1}{2}}$.		
	6	Find L { $\frac{sinat}{t}$ }, given that L { $\frac{sint}{t}$ } = tan^{-1} { $\frac{1}{s}$ }.		
	7	Find the continuous extension of the function $f(x) = \frac{x^2 + x - 2}{x^2 - 1}$ to $x = 1$		
	8	Is the function $f(x) = \frac{1}{r}$ continuous on [-1, 1]? Give reason.		
	9	Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$.		
	10	Give the differential equation of the orthogonal trajectory of the family of circles $x^2 + y^2 = a^2$.	e	
	11	Find the Wronskian of the two function sin2x and cos2x.		
	12	Solve $(D^2 + 6D + 9) = 0; D = \frac{d}{dx}$.		
	13	To solve heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ how many initial and boundary conditions are required.		
	14	Form the partial differential equations from $z = f(x + at) + g(x - at)$.		
Q.2	(a)	$S_{a} = a^{3x} (x + 1)^{2}$	03	
~	(u) (b)	Solve: $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$. Solve: $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{y\cos x + \sin y + y} = 0$	04	
	(°) (c)	Solve: $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	07	
	(C)	Find the series solution of $\frac{d^2y}{dx^2} + xy = 0$.	07	
	(c)	Find the general solution of $2x^2y'' + xy' + (x^2 - 1)y = 0$ by using frobenius method.	07	
Q.3	(a)	Solve : $(D^3 - 3D^2 + 9D - 27)y = \cos 3x$.	03	
	(b)	Solve: $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\ln x)$.	04	
	(c)	(i) Solve : $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$.	03	
		(ii) find the general solution to the partial differential equation	04	

(ii) find the general solution to the partial differential equation

$$(x^2 - y^2 - z^2)p + 2xyq = 2xz.$$
OR

Q.3 (a) Solve
$$(D^3 - D)y = x^3$$
.

(b) Find the solution of $y'' - 3y' + 2y = e^x$, using the method of **04** variation of parameters.

(c) Solve
$$x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$$
 using method of separation of variables. 07

Q.4 (a) Find the Fourier cosine integral of
$$f(x) = e^{-kx}$$
, $x > 0$, $k > 0$ 03

(b) Express
$$f(x) = |x|, -\pi < x < \pi$$
 as fouries series.

(c) Find Fourier Series for the function
$$f(x)$$
 given by 07

$f(x) = \begin{cases} 1 + \frac{2x}{\pi}; \ -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}; \ 0 \le x \le \pi \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

OR

Q.4	(a)	Obtain the Fourier Series of periodic function function	03
		f(x) = 2x, -1 < x < 1, p = 2L = 2	
	(b)	Show that $\int_0^\infty \frac{\sin\lambda\cos\lambda}{\lambda} d\lambda = 0$, if x > 1.	04
	(c)	Expand $f(x)$ in Fourier series in the interval $(0, 2\pi)$ if	07
		$f(x) = \begin{cases} -\pi \ ; \ 0 < x < \pi \\ x - \pi \ ; \ \pi < x < 2\pi \end{cases}$	
		and hence show that $\sum_{r=0}^{\infty} \frac{1}{(2r+1)^2} = \frac{\pi^2}{8}$.	
Q.5	(a)	Find L{ $\int_0^t e^t \frac{\sin t}{t} dt$ }.	03
	(b)	Find $L^{-1}\left\{\frac{2s^2-1}{(s^2+1)(s^2+4)}\right\}$.	04
	(c)	Solve initial value problem : $y'' - 3y' + 2y = 4t + e^{3t}$, $y(0) = 1$ and	07
		y'(0) = -1, using Laplace transform.	
		OR	
Q.5	(a)	Find L {tsin3tcos2t}.	03
	(b)	Find $I^{-1}\{\frac{e^{-3s}}{2}\}$	04

(b) Find
$$L^{-1}\left\{\frac{e^{-ss}}{s^2+8s+2s}\right\}$$
. (c) Second Let $L^{-1}\left\{\frac{e^{-ss}}{s^2+8s+2s}\right\}$. (7)

(c) State the convolution theorem and apply it to evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$. 07

03

04