Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(New) • EXAMINATION - WINTER 2016 Subject Code:2130405 Date:02/01/2017

Subject Name:Thermodynamics

Total Marks: 70

Instructions:

Ι.	Attempt all questions.
2.	Make suitable assumptions wherever necessary.

3.	Figure	es to the right indicate full marks.	
			MARKS
Q.1		Short Questions	14
	1	State Zeroth law of thermodynamics	
	2	Define internal energy.	
	3	Define Standard heats of combustion.	
	4	Define Heat Pump.	
	5	Write three different units of pressure.	
	6	What is Refrigeration?	
	7	Define heat capacity.	
	8	Explain system and surroundings.	
	9	Definition of entropy	
	10	Define Standard heats of formation.	
	11	Define Sensible heat.	
	12	What is fundamental property.	
	13	State first law of thermodynamics	
	14	What do you mean by equation of state?	
Q.2	(a)	Prove that C_p - $C_v = R$	03
	(b)	Give various statements of the second law of	04
		thermodynamics.	
	(c)	Define Refrigerator capacity and Coefficient of	07
		performance.	
		OR	0=
	(c)	Drive the equation for enthalpy and Entropy as functions of	07
0.3	()	temperature and pressure	0.2
Q.3	(a)	Explain heat engine.	03
	(b)	Explain the factors affecting the choice of a refrigerant with examples.	04
	(c)	Explain PVT behaviour of pure substances with the help of	07
	(•)	PT and PVdiagrams.	• •
		OR	
Q.3	(a)	Starting from basic principles, obtain different forms of	03
	. ,	virial equations.	
	(b)	Define the first law of thermodynamics. What are its	04
		limitations?	
	(c)	Describe with neat sketch explain the Vapor compression	07
		cycle.	
Q.4	(a)	Define Hess law and write it applications.	03
	(b)	Derive the equaton of efficiency for heat engine.	04
	(c)	A steel casting $[Cp = 0.5 \text{ kJ kg-1 K-1}]$ weighing 40 kg and	07
		at a temperature of 450°C is quenched in 150 kg of oil [Cp	
		= 2.5 kJ kg-1 K-1] at 25°C. If there are no heat losses, what	

is the change in entropy of i) the casting ii) the oil, and iii) both considered together?

OR

- Q.4 (a) For an Ideal gas with constant heat capacities, show that... For a temperature increase from T_1 to T_2 , ΔS of the gas is greater when the changes occurs at constant pressure than when it occurs at constant volume.
 - Derive the following thermodynamic relationship **04**

$$dS = C_P \frac{dT}{T} - \left(\frac{\partial V}{\partial T}\right)_P dP$$

(b)

- (c) For an ideal gas prove that $\frac{\Delta S}{R} = \int_{T_o}^{T} \frac{C_V^{ig}}{R} \frac{dT}{T} + \ln \frac{V}{V_O}$
- Q.5 (a) Explain the term 'temperature'. Mention different units of temperature and relations among various temperature scales.
 - (b) Derive the following Maxwell's equation from the first inciple.

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

(c) Explain cubic equations of state and derive expressions of constants a and b of Vanderwaal's equations of state in terms of critical properties of a substance.

OR

- Q.5 (a) Explain intensive and extensive properties of 03 thermodynamics.
 - (b) One kilo mol CO₂ occupies a volume of 0.381 m³ at 313 K. Compare the pressure given by
 - (a) Ideal gas equation
 - (b) Van der Waals equation

Take the van der Wasls equation to be $a=0.365 \text{ Nm}^4/\text{mol}^2$ and $b=4.28\times10^{-5} \text{ m}^3/\text{mol}$.

(c) Derive a mathematical expression of the first law of thermodynamic for a Flow process.
