			Enrolment No			
			DLOGICAL UNIVERSITY			
Cubia	at (` '	• EXAMINATION – WINTER 2016	7		
•		Code:2131005	Date:09/01/201'	/		
•		Name: Electrical Machines		7 0		
		30 AM to 01:00 PM	Total Marks: 7	/U		
Instruc		s: Attempt all questions.				
	2.	Make suitable assumptions wher Figures to the right indicate full	marks.			
Q.1			• • • • • • • • • • • • • • • • • • •	4		
	1	With increase in load of a trans				
		(a) increase.	(b) decrease.			
		(c) remain constant.	(d) depends on type of load.			
	2	What is the current drawn be supplied rated voltage and second (a) No-load current.	oy an actual transformer, when primary is ondary is kept open. (b) Full-load current.			
		(c) Zero current.	(d) Magnetizing current.			
	3	• •	ace in the rotor of a 3-phase induction motor,			
		when it	r			
		(a) is blocked.	(b) runs at synchronous speed.			
		(c) runs at no-load.	(d) runs at full-load.			
	4	(a) To limit temperature rise of the machine.(b) To reduce losses.				
		(c) To produce rotating magne (d) Both (a) and (b).	tic field in conjunction with main winding.			
	5	When 3-phase a.c. supply of 50 Hz is given to stator of a 4-pole, 3-ph induction motor, in standstill condition the rotor frequency will be				
		(a) 25 Hz.	(b) 50 Hz.			
	_	(c) 0 Hz.	(d) 12.5 Hz.			
	6		an alternator is taken out to the external load			
		circuit through	(L)1: 1			
		(a) carbon brushes.	(b) solid connections.			
	7	(c) slip rings. Which type of alternator is use	(d) commutator segments.			
	7	(a) Salient pole alternator.	d in hydro-electric power stations? (b) Non-salient pole alternator.			
		(c) Turbo generator.	(d) Steam turbine alternator.			
	8	- · · ·	notor its field winding should be			
	O	(a) kept open.	(b) connected to a d.c. source.			
		(c) short-circuited.	(d) connected to a a.c. source.			
	9	• •	f armature reaction on the main flux is to			
		(a) reduce it.	(b) distort it.			
		(c) both, reduce and distort it.	(d) reverse it.			
	10	In d.c. generators, the polarity	, ,			
	10	(a) same as that of the main po	<u> </u>			
		(b) same as that of the main po				
		(c) opposite to that of the main (d) None of the above.				

	11	 What is the function of brush and commutator in a d.c. motor. (a) To convert a.c. into d.c. (b) To reduce demagnetizing effect of armature reaction. (c) To produce unidirectional current in the armature. (d) To produce unidirectional torque. 			
	12	The economisers are used to heat			
	12	(a) air. (b) feed water.			
		(c) steam. (d) None of the above.			
	13	The skin effect in stranded conductor compared to solid conductor is			
	13	(a) less. (b) more.			
		(c) equal. (d) None of the above.			
	1.1	• • •			
	14	The main consideration in the design of a feeder is the (a) current carrying capacity (b) voltage drop			
		(a) current carrying capacity.(b) voltage drop.(c) power handling capacity.(d) None of the above.			
Ω_{2}	(a)	Draw a complete phasor diagram for a step-down transformer when the	03		
Q.2	(a)	load power factor is lagging.	US		
	(b)	Draw the torque-speed characteristics of 3-phase induction motor and	04		
	(D)	explain the effect of change in rotor resistance.	V		
	(c)	•			
	(C)	Explain the back-to-back test with necessary diagram for separation of losses in two identical 1-phase transformers.			
		OR			
	(c)	A 746 kW, 3-phase 50 Hz, 16-pole induction motor has a rotor impedance of $(0.02 + j0.15)$ Ω at standstill. Full-load torque is obtained at 360 RPM. Calculate (i) the ratio of maximum to full-load torque, (ii) the speed for maximum torque and (iii) the rotor resistance to be added to get maximum	07		
		starting torque.			
Q.3	(a)	Explain power stages in 3-phase induction motor.	03		
	(b)	Derive e.m.f. equation of an alternator.	04		
	(c)	Describe, with neat sketches, the constructional details of salient pole and 0			
		non-salient pole type of rotors in an alternator.			
		OR			
Q.3	(a)	State the advantages of stationary armature in an alternator.	03		
	(b)	Explain diversity factor and plant utilization factor. 0			
	(c)	Explain the synchronous impedance method of voltage regulation in an	07		
	(.)	alternator with neat diagrams.			
Q.4	(a)	Derive e.m.f. equation of a d.c. generator.	03 04		
	(b) (c)	Explain commutator action in d.c. generator with necessary diagrams. A d.c. shunt generator supplies 96 A at a terminal voltage of 200 V. The armature and shunt field resistances are 0.1 Ω and 50 Ω respectively. The iron and frictional losses are 2500 W. Find (i) generated e.m.f., (ii) copper losses and (iii) commercial efficiency.	07		
Q.4	(a)	Explain critical resistance for a d.c. series generator.	03		
Ų.T	(b)	Explain the characteristics of d.c. shunt motor.	03		
	(c)	What is the necessity of d.c. motor starter? Explain three-point starter.	07		
Q.5	(a)	Define power factor. What is the need of improving power factor?			
Z.c	(b)	What is Ferranti effect? How is it effect the voltage of transmission line?			
	(c)	Derive the equitation of starting torque and running torque of 3-phase induction motor.	07		
	, .	OR			
Q.5	(a)	Why 1-phase induction motor is not self-starting?	03		
	(b)	1 *1			
	(c)	A 3-phase induction motor has a 4-pole star-connected stator winding. The motor runs on a 50 Hz supply with 200 V between lines. The rotor	07		

resistance and standstill reactance per phase are 0.1 Ω and 0.9 Ω respectively. The ratio of rotor to stator turns is 0.67. Calculate (i) torque at 4 % slip, (ii) maximum torque and (iii) speed at maximum torque.
