	Seat No.:	Enrolment No.
--	-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(New) • EXAMINATION - WINTER 2016

Subject Code:2140502 Date:22/11/2016

Subject Name: Chemical Engineering Thermodynamics - I

Time: 02:30 PM to 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	Short Questions	14
	1 Define internal energy.	
	What is a steady flow process?	
	3 Explain system and surroundings.	
	4 Define the phase rule.	
	5 Define specific heat.	
	6 Define state function.	
	7 What do you mean by equation of state?	
	8 Define sensible heat.	
	9 Define latent heat of sublimation.	
	10 Define standard heat of formation.	
	11 Define standard heat of combustion.	
	12 What is a fundamental property?	
	Write Kelvin-Planck statement for the second law of thermodynamics.	
	What is Refrigeration?	
Q.2	(a) State whether the following properties are extensive or intensive: i)	03
Q.2	temperature, ii) volume, iii) specific volume, iv) heat capacity, v)	027
	potential energy, vi) pressure	
	(b) A special manometer fluid has a specific gravity of 3.65 and is used to	04
	measure a pressure of 1.25 bar at a location where the barometric	
	pressure is 760 mm Hg. What height will the manometer fluid register?	
		07
	For an ideal gas prove that $\frac{\Delta S}{R} = \int_{0}^{\infty} \frac{C_{T}^{R}}{R} \frac{dT}{T} + \ln \frac{V}{Vo}$	
	$R = \int_{0}^{\infty} R T = Vo$	
	OR	
	(c) Derive a mathematical expression of the first law of thermodynamics	07
	for a flow process.	
0.3	(a) Explain the principle of corresponding states.	03
2.0	(b) Discuss any major four desirable properties of a good refrigerant.	04
	(c) Explain PVT behaviour of pure substances with the help of PT and PV	07
	diagrams.	
	OR	
Q.3	(a) Explain in brief multistage compression process.	03
4.5	(b) Starting from basic principles, obtain different forms of virial	04
	equations. Also, explain the physical significance of virial coefficient.	
	(c) Explain cubic equations of state and derive expressions of constants a	07
	and b of Vander Waal's equations of state in terms of critical properties	
	of a substance.	

Q.4	(a) (b)	For steady flow pressure, what is heated from 200	rite a note on third law of thermodynamics. 03 or steady flow in a heat exchanger at approximately atmospheric essure, what is the amount of heat required when 10 moles of SO_2 is rated from $200^{\circ}C$ to $1100^{\circ}C$? Heat capacity of SO_2 is given by: $c^{ig}/R = 5.699 + 0.801 \times 10^{-3}T - 1.015 \times 10^{5}T^{-2} \text{ J/(mol. K)}, T is in K$						
	(c)	Handbook value the table for ber Calculate: i) the the value at 25 equation.	07						
		Component	$\Delta H^{\ell \nu}$ at 25°C (J/g)	$\Delta H^{\ell \nu}$ at $T_n (J/g)$	T _n (K)	P _c (bar)	T _c (K)		
		Benzene	433.3	393.9	353.2	48.98	562.2		
		D.C. II. 1		OR	1 1	1 1	c .:	0.2	
Q.4	(a)						formation	03	
		of methane gas from the following heat of combustion data: i) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2}(g) + 2H_{2}O_{(l)}$; $\Delta H_{298} = -890.94 \text{ kJ}$							
		ii) $C_{(S)} + O_2(g) \rightarrow CO_2(g)$; $\Delta H_{298} = -393.78 \text{ kJ}$							
		iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$; $\Delta H_{298} = -286.03 \text{ kJ}$							
	(b)	For an ideal g	04						
		temperature increase from T_1 to T_2 , ΔS of the gas is greater when the changes occurs at constant pressure than when it occurs at constant volume.							
	(c)	Write a short no		07					
Q.5	(a)	Define Refrigerator capacity and coefficient of performance. 03							
	(b)	temperature and pressure.							
	(c)								
Q.5	(a)	Write a short no	te on ejectors					03	
	(b)	Explain the term 'temperature'. Mention different units of temperature						04	
	(c)							07	