Seat No.: ____ Enrolment No._ **GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) • EXAMINATION - WINTER 2016** Subject Code: 2140505 Date: 18/11/2016 **Subject Name: Chemical Engineering Maths** Time:02:30 PM to 05:30 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. Make suitable assumptions wherever necessary. 2. 3. Figures to the right indicate full marks. Q.1 **Short Ouestions** 14 1 If 0.333 is the approximate value of 1/3, find the absolute and relative errors. 2 The sum of the roots of an equation $x^3 - 2x^2 + x - 1 = 0$ is The Newton-Raphson iterative formula to find $\sqrt[3]{N}$ is 3 4 The condition of convergence of Gauss-Seidal method is that the equations of the system are Inverse of $A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$ is 5 6 Give the normal equations to fit the straight line y = a + bx to *n* observations. 7 $\Delta \tan^{-1} x = \dots$ 8 If $f(x) = \frac{1}{x}$ then the divided difference $\begin{bmatrix} a & b \end{bmatrix} = \dots$ 9 Give the formula for f'(x) in terms of forward difference operator Δ . 10 If f(0) = 1, f(0.5) = 0.8, f(1) = 0.5, find the value of $\int_{0}^{1} f(x) dx$ using Trapezoidal rule. Write the Taylor's series formula for the solution of $y' = f(x, y), y(x_0) = y_0$ 11 The Euler's formula for the numerical solution of first order ODE-IVP is 12 The partial differential equation. 13 $A(x, y)u_{xx} + B(x, y)u_{xy} + C(x, y)u_{yy} + F(x, y, u, u_x, u_y) = 0$ is elliptic if (a) $B^2 - 4AC < 0$ (b) $B^2 - 4AC = 0$ (c) $B^2 - 4AC > 0$ 14 The finite difference form of $\frac{\partial^2 u}{\partial r^2}$ is (a) Solve the equation $x^3 - 7x^2 + 36 = 0$, given that one root is double of another. Q.2 3 4 (b) Find the root of the equation $\cos x = xe^x$ using the method of false position correct to four decimal places. Solve the non-linear equations $x^2 - y^2 = 4$ and $x^2 + y^2 = 16$ numerically with 7 (c)

(c) Solve the non-linear equations $x^2 - y^2 = 4$ and $x^2 + y^2 = 16$ numerically with 7 $x_0 = y_0 = 2.828$ using Newton-Raphson method. (Carry out two iterations) OR

(c) The pressure and volume of a gas are related by the relation $pV^{\alpha} = k$, where 7 α and k being constants. Find this relation for the following set of observations:

$p(kg/cm^3)$:	0.5	1.0	1.5	2.0	2.5	3.0
V(liters):	1.62	1.00	0.75	0.62	0.52	0.46

(a) Apply Gauss-Seidal iteration method to solve the following equations: 0.3 20x + y - 2z = 17, 3x + 205.

(b)

$$\begin{array}{c} 0y - z = -18, \quad 2x - 3y + 20z = 25\\ \begin{bmatrix} 2 & 1 & 1\\ 0 & 1 & 0 \end{bmatrix}$$

Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.

- (c) Find the largest eigen value and corresponding eigen vector of the matrix 7 $\begin{vmatrix} 1 & 3 & 0 \\ 2 & 0 & -4 \end{vmatrix}$, taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector.

OR

Q.3 (a) The below table shows the temperature f(t) as a function of time t:

3

4

3

4

3

4

				()			
t :	1	2	3	4	5	6	7
f(t):	81	75	80	83	78	70	60
	1		•7				

Using Simpson's $\frac{1}{3}$ rule evaluate $\int_{1}^{7} f(t) dt$.

- Solve the following system of equations using Gauss elimination method: **(b)** 4 x+4y-z=-5, x+y-6z=-12, 3x-y-z=4.
- (c) From the following data, estimate number of persons getting wages between 7 Rs. 10 and 15:

Wages in Rs.:	0-10	10-20	20-30	30-40	
Frequency:	9	30	35	42	
			_		-

- (a) Find the numbers of positive, negative and imaginary roots of the equation 0.4 3 $2x^7 - x^5 + 4x^3 - 5 = 0$.
 - Given that **(b)**

Orven une								
<i>x</i> :	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
<i>y</i> :	7.898	8.403	8.781	9.129	9.451	9.750	10.031	
Find $\frac{dy}{dx}$ at $x = 1.1$.								

(c) Using Newton's divided difference formula, evaluate f(8) and f(15) from 7 below table:

0010 m tuoi	01							
<i>x</i> :	4	5	7	10	11	13		
f(x):	48	100	294	900	1210	2028		
OP								

- **Q.4** (a)
- Using Lagrange's formula express $\frac{3x^2 + x + 1}{(x-1)(x-2)(x-3)}$ as a sum of partial

fraction.

- (b) Establish Newton's backward interpolation formula.
- The table gives the distance in nautical miles of the visible horizon for the (c) 7 given height in feet above the earth's surface:

x = height:	100	150	200	250	300	350	400
y = distance :	10.63	13.03	15.04	16.81	18.42	19.90	21.27
Find the value of y when (a) $x = 160$ ft. and (b) $x = 410$ ft.							

Q.5 (a) Using modified Euler's method, find an approximate value of y when
$$x = 0.3$$
 7, given that $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$.

(b) Using finite difference method, find y(0.25), y(0.5), y(0.75) satisfying the 7 differential equation $\frac{d^2y}{dx^2} + y = x$, subject to the boundary conditions y(0) = 0, y(1) = 2.

OR

- **Q.5** (a) Using Runge-Kutta method of order 4, solve $\frac{dy}{dx} = xy + y^2$ with initial 7 condition y(0) = 1 for x = 0.1, 0.2.
 - (b) Using Gauss Seidel method up to three iterations, solve the two dimensional 7 Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the following square mesh with boundary values as shown in below diagram.


