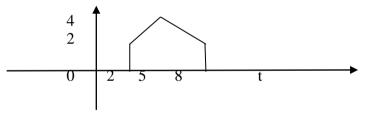

Seat No.:		Enrolment No.		
		GUJARAT TECHNOLOGICAL UNIVE	RSITY	
		BE - SEMESTER-IV(New) • EXAMINATION - WINT		
•		Code:2141005	Date:25/11/2016	
•		Name:Signals and Systems		
Time	e:02	:30 PM to 05:00 PM	Total Marks: 70	
Instru	ection	nc•		
111501 4		Attempt all questions.		
		Make suitable assumptions wherever necessary.		
	3.	Figures to the right indicate full marks.		
			MARKS	
Q.1	1	Choose a correct answer.	14	
	1	Random signal can be modeled by (a) differential		
		equation (b) difference equation (c) statistical equation (d) integral		
	2	Periodic signals are (a) $x(t+T)=x(t)$ (b) $x(t-T)=x(T)$		
		(n+mN) = x[n] (d) all the above		
	2			
	3	Even signal satisfies (a) $x(-t)=x(t)$ (b) $x[-n]=-x[n]$		
		•		
	4	Which system is non-casual system (a) $y(t) = x(t+1)$		
		(b) $y(t)=x(t-1)$ (c) $y(t)=x(t)+c$ (d) $y(t)=x(t-1)+c$		
	5	Which signal is non causal (a) $x(t)=0 t<0$ (b) $x(t)=0 t>0$		
		x(n)=0 n<0 (d) x(t)=1 t>0		
	6	In memory less system (a) zero state response is zero		
		(b) zero input response is zero (c) both responses are zero		
		(d) both responses are finite		
	7	Laplace transform of u(t) is		
		(a) $1/s$ (b) s (c)1 (d) s^2		
	8	Inverse Longe transform of 1		
		Inverse Laplace transform of $\frac{1}{(s+a)^2}$ is		
		(a) $tu(t)$ (b) $te^{-at} u(t)$ (c) $e^{-at} u(t)$ (d) $ae^{-at} u(t)$		
	_			
	9	Inverse Laplase Transform of $\frac{10}{s^2 + 2s + 5}$		
		5 1 25 1 5		
	10	(a) $5e^{-t}\sin 2t$ (b) $5e^{-t}\cos 2t$ (c) $5e^{t}\sin 2t$ (d) $5e^{t}\cos 2t$		
	10	For causal signal x[n], z transform X[z] is		
		(a) $X(z) = \sum x[n]z^{-n}$ (b) $X(z) = \sum x[n]z^{-n}$		
		(a) $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$ (b) $X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$ (c) $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{n}$ (d) $X(z) = \sum_{n=0}^{\infty} x[n] z^{n}$		
		(c) X(z)= $\sum_{n=1}^{\infty} x[n] z^{n}$ (d) X(z)= $\sum_{n=1}^{\infty} x[n] z^{n}$		
		$\overline{n=-\infty}$ $\overline{n=0}$		

11 z-transform of $\delta(n)$ is (a) 1 (b) 0 (c) -1 (d) all of the above

	12	z-transform of $x[n-n_0]$ is (a) $z^{-n_0} X(z)$ (b) $z^{n_0} _{X(z)}$ $\bigcirc X(z+z_0)$ (d) all of the above		
	13	Signal x(t) is odd signal if (a) $x(t) = -x(t)$ (b) $x(t) = -x(-t)$ © $x(t+T)$ (d) $x(t-T)$		
	14	Fourier transform of $\delta(t)$ (a) zero (b) 1 (c) 2π (d) None of the above		
Q.2	(a) (b) (c)	Explain classification of signals. Explain classification of systems. A system has the input-output relation given by y[n] = T(x[n]) = nx[n] determine whether the system is (i) memory less (ii) causal (iii) linear (iv) time-invariant (v) stable OR	03 04 07	
	(c)	Explain the property of continuous time and discrete time Systems.	07	
Q.3	(a)	Consider the system described by	03	
		Y'(t) + 2 y(t) = x(t) + x'(t) Find the impulse response h(t) of the system.		
	(b) (c)	Explain sampling and quantization. Define Z-transform. Explain region of convergence.	04 07	
	(0)	OR	07	
Q.3	(a) (b)	· / ·		
		$X(z) = \frac{Z+1}{2Z^2 - 7Z + 3}$		
	(c)	Define Laplace transform. Prove linearity property of Laplace transform. State how ROC of Laplace transform is useful for in defining stability of system.	07	
Q.4	(a)	Explain the trigonometric fourier series.	03	
	(b)	1 7 1 1 7	04	
	(c)	Find the Z-transform of the following signals. (a) $x(n) = \delta(n-n_0)$	07	
		(b) $x(n) = a^{n+1}u(n+1)$		
		(c) $x(n) = a^{-n}u(-n)$		
Q.4	(a)	OR Find the fourier transform of the signal	03	
2.1	(u)	$x(t) = \frac{1}{a^2 + t^2}$	00	
			Ω.4	
	(b)	Find the inverse z-transform of	04	
		$X(z) = z^{2}(1 - \frac{1}{2}z^{-1})$		
	(c)	Find the Fourier transform of $f(t)$. $f(t)=e^{-at}cos(bt)$	07	

Q.5 (a) Find Fourier transform of a rectangular pulse 2 seconds with a magnitude of 5 Volts as shown in below figure.


- (b) Derive the relationship between Laplace Transform and Fourier 04 Transform.
- (c) Determine whether or not each of the following signals is periodic? If 07 the signal is periodic, find the fundamental time period.

(a)
$$x(t) = \left[\sin(2t - \frac{\pi}{3})\right]^2$$

(b)
$$x(n) = \cos(n\pi/8)$$

OR

- Q.5 (a) Define discrete fourier transform and explain important 03 Features of it.
 - (b) Explain the properties of Region of Convergence with reference to ztransform.
 - (c) Derive the Convolution integral for CTS. Find out the even and odd part 07 of the following signal
