Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY

WINTED 2016

BE - SEMESTER-IV(New) • EXAMINATION - WINTER 2016					
Subject Code:	2141307	Date:21/11/2016			
Subject Name	Basics of Environmental Hydraulics				
	M to 05:00 PM	Total Marks: 70			
Instructions:					
	pt all questions. suitable assumptions wherever necessary.				
	es to the right indicate full marks.				
		MARKS			
Q.1	Short Questions	14			
1	Fluids for which the flow behavior index n is less th	an			
	unity are called:				
	(a) Ideal Plastic (c) Dilatant substance				
2	(b) Ideal fluid (d) Pseudo-plastic For incompressible flow, continuity equation can take t	ha			
2	form:				
	(a) $A_1V_1 = A_2V_2$ (c) $\rho_1A_1V_1 = \rho_2A_2V_2$				
	(b) $\rho_1 A_1 = \rho_2 A_2$ (d) $p_1 A_1 V_1 = p_2 A_2 V_2$				
3	Working principle of Venturimeter is based on				
	(a) Bernoulli's Equation (c) Continuity Equation	on			
	(b) Momentum Equation (d) None of these				
4	Mercury is used in manometers because it is:				
	(a) Is shinning and can be easily read				
	(b) having low surface tension(c) does not stick to surface				
	(d) has high density and so reduces heights of manomet	er			
5	Cipollette weir is special type of weir.				
C	(a) Triangular (c) Stepped				
	(b) Trapezoidal (d) All of the above				
6	Laminar flow is also known as:				
	(a) Steady flow (c) Unsteady flow				
	(b) Uniform flow (d) Streamline flow				
7	If the head of liquid from the centre of orifice is mo	ore			
	than five times the diameter of orifice is called				
8	All the terms of energy in Bernoulli's equation ha	ve			
	dimension of:				
	(a) Energy(c) Mass(b) Work(d) Length				
0					
9	Poise is the unit of				
10	A curved surface is submerged in a liquid. The Vertic	cal			
	component of the total pressure force on surface is (a) Weight of liquid covered by surface				
	(b) Pressure force on a horizontal projection of surfa	ce			
	(c) Pressure force on a vertical projection of surface				
	(d) None of the above				
11	e e	ore			
	accurate result. (a) Triangular (c) Stepped				
	(a) mangunar (c) Stepped				

- (a) Triangular(b) Trapezoidal (c) Stepped(d) Rectangular

		D	
	12	Pressure intensity in water at a level of 1m below the free surface of water is	
	13	Line which gives the sum of pressure head and datum head of a flowing flow in a pipe with respect to some reference line is known as	
	14	 Which one is the completely theoretical line: (a) Streamline (b) Streakline (c) Pathline (d) All of above 	
Q.2	(a)	Discuss about Energy gradient line and Hydraulic gradient line.	03
	(b)	0	04
	(c)		07
	(c)	1 1	07
Q.3	(a)	Discuss about discharge through partially submerged orifice.	03
	(b)	Derive an expression for triangular notch for flow discharge.	04
	(c)	Derive an expression for time of emptying a tank with rectangular notch.	07
Q.3	(a)		03
2.º	(b) (c)	-	04
Q.4	(c) (a)	Show that $C_d=C_v \times C_c$ for pipe flow.	03
-	(b)	L L	04
	(c)	Derive an expression for equation of continuity for 3D flow condition.	07
Q.4	(a)	Differentiate between open channel and pipe flow.	03
	(b)	Discuss different types of manometers which can be used for pipe flow condition.	04
	(c)	Derive an expression for rate of flow through Orifice meter.	07
Q.5	(a)	Compare steady, unsteady, rotational and irrotational flow.	03
	(b)	Discuss about the flow condition when pipes are connected in series and parallel.	04
	(c)	A horizontal venturimeter with inlet diameter 150 mm and throat diameter 75 mm is employed to measure the discharge of water. The differential manometer connected to inlet gives reading of 150 mm of Hg. Determine the	07

rate of flow if the coefficient of discharge is 0.98. **OR**

	011	
(a)	Discuss the deviation of viscosity of gases and liquid	03
	with respect to change in temperature.	
(b)	Differentiate between	04
	(a) Subcritical, critical and supercritical flow	
	(b) Laminar and Turbulent flow	
(c)	Derive an expression for time of emptying a circular	07
	horizontal tank with an orifice at its bottom.	
	(b)	 (b) Differentiate between (a) Subcritical, critical and supercritical flow (b) Laminar and Turbulent flow (c) Derive an expression for time of emptying a circular
