Seat 1	No.:	Enrolment No.	
~ eut 1		GUJARAT TECHNOLOGICAL UNIVERSITY	
~ •		BE - SEMESTER-IV (New) • EXAMINATION – WINTER 2016	
•		Code: 2141905 Date: 18/12	1/2016
Tim	Subject Name: Complex Variables and Numerical Methods Time: 02:30 PM to 05:30 PM Total M Instructions:		
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
			MARKS
Q.1		Short Questions	14
	1	Find the principle angle of $\frac{1}{\sqrt{3}+i}$.	
	2 3	Define analytic function. Write necessary condition for differentiability of $f(z)$.	
	4	Find the real part of $f(z) = \frac{1}{z - 2i}$ at point $1 + i$.	
	5	Define harmonic function.	
	6	Separate real and imaginary part of $f(z) = z^2$.	
	7	Classify the singular point z=0 for the function $f(z) = \frac{1}{z^4 - 4z^2}$	
	8	Show that $\Delta = E - 1$.	
	9	Check whether $w = \frac{1}{z}$ is conformal mapping or not.	
	10 11	Write trapezoidal rule. When does Newton- Raphson method fail to find root of equation.	
	12	Can we use Gauss- Seidel method to solve the system of linear equation 3x + y + 2z = 8, 2x + 3y + z = 9, x + 2y + 3z = 6.	
	13	Express $y = x^2$ in factorial notation.	
	14	Find $[a,b]$ for $f(x) = \frac{1}{x}$.	
Q.2	(a)	Check whether functions $f(z) = z^{\frac{3}{2}}$ is analytic or not. Also find derivative of $f(z)$.	03
	(b)	Find the bilinear transformation which maps $z = 1, i, -1$ into the points $w = 0, 1, \infty$.	04
	(c)	Evaluate the Cauchy's principle value of $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}.$	07
		OR	
	(c)	Show that $u(x, y) = e^x \cos y$ is harmonic function. Also find harmonic conjugate of $u(x, y)$.	07
Q.3	(a)	Using Cauchy integral formula, Evaluate $\int_{C} \frac{3z^2 + 2}{(z-2)(z^2 + 4)} dz$ where C is	03
		a circle $ z-2 = 2$.	

	(b)	Find and plot all the roots of $\sqrt[3]{8i}$.	
	(c)	Evaluate $\int z^2 dz$ where C is taken along triangle in z-plane having	
		vertices $z = \pm i, z = -1$ taken in counter clockwise sence. OR	
Q.3	(a)		
-		Expend $f(z) = \frac{e^z}{(z-1)^2}$ about z=1. Also classify singular point z=1.	
	(b)		
		Discuss the continuity of $f(z) = \begin{cases} \frac{\overline{z}^2}{z}; & z \neq 0 \\ 0; & z = 0 \end{cases}$ at z=0.	
	(c)	Expand $f(z) = \frac{1}{(z+2)(z+4)}$ valid for the region	
~ ((i) $ z < 2$ (ii) $2 < z < 4$ (iii) $ z > 4$.	
Q.4	(a)	Solve by Gauss Elimination method x + 2y + z = 3; $2x + 3y + 3z = 10$; $3x - y + 2z = 13$.	
	(b)	Derive iterative formula to find \sqrt{N} . Use this formula to find $\sqrt{28}$.	
	(c)	Determine the polynomial by Newton's forward difference formula $\sqrt{23}$.	
		from the following table:	
		x: 0 1 2 3 4 y: -10 -8 -8 -4 40	
		y: -10 -8 -8 -4 40 Also find y when x=1.5.	
		OR	
Q.4	(a)	Using Euler's method, find an approximate value of corresponding to	
		x=0.3, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$; y(0) = 1. Take h = 0.1.	
	(b)	Find a real root of the equation $x^3 - 2x - 5 = 0$ using secant method	
		correct to three decimal places taking $x_0 = 2$ and $x_1 = 3$.	
	(c)	Determine the interpolating polynomial of degree three using	
		Lagrange's interpolation for the table below:	
		x: -1 0 1 3 y: 2 1 0 -1	
		Also find the value of y when $x=2$.	
Q.5	(a)	The velocity v of a particle at a distant s from a point on its path is given by the following table:	
		given by the following table: s (ft) 0 10 20 30 40 50 60	
		v(ft/sec) 47 58 64 65 61 52 38	
		Estimate the time taken to travel 60 ft. using Simpson's $\frac{3}{8}$ th rule.	
	(b)	Using Runge- Kutta method of fourth order to calculate $y(0.2)$ given	
	(~)		
		that $\frac{dy}{dx} = x + y$; $y(0) = 1$, taking h=0.1.	
	(c)	Solve by Gauss-Seidel method	
		10x + y + z = 6; $x + 10y + z = 6$; $x + y + 10z = 6$. OR	
Q.5	(a)		
	·	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by Gaussian formula with two point.	
	(b)	Find a positive root of $xe^x - 2 = 0$ by the method of False position.	

(c) Find the dominant eigen value of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by power method and hence find the other eigen value also. 07
