Seat No.: _

Enrolment No.__

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(New) • EXAMINATION - WINTER 2016

Subject Code:2142003

Date:21/11/2016

14

Subject Name:Control Theory Time:02:30 PM to 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Do as directed. (short questions)

- (1) State the difference between open-loop *vs* close-loop control system.
- (2) What is force-voltage analogous system? Which are the analogous quantities according to this method?
- (3) Define pole, zero and order of a control system.
- (4) List out the advantages of state space analysis over the conventional transfer function method.
- (5) Write the Mason's gain formula.
- (6) The closed loop transfer function of a second order system is given by $\frac{4}{s^2+2s+4}$. Determine the damping ratio and natural frequency of oscillation.
- (7) Explain, How the roots of characteristic equation are related to stability?
- (8) Draw the time response of first order system with step input.
- (9) Define rise time for underdamped system.
- (10) Define absolute stability and relative stability.
- (11) What is bode plot? With necessary diagram explain the gain margin and phase margin.
- (12) State the Nyquist stability criterion?
- (13) How will you find the gain K at a point on root locus?
- (14) What is the effect on system performance, when a Proportional Integral (PI) controller is introduced in a system?
- Q.2 (a) For the given mechanical translation system (Fig. 1). Write down differential equations, represents in Force-Voltage analogy, and find out $X_1(s)/F(s)$.
 - (b) A linear feedback control system has the block diagram shown in Fig. 2. Using 07 block diagram reduction rules, obtain overall transfer function C(s)/R(s).

OR

- (b) For the signal flow graph shown in Fig. 3, using Masson's gain formula 07 determine the overall transmission C/R.
- Q.3 (a) Draw the liquid level system and explain the concept of resistance and 03 capacitance of the system.
 - (b) Derive the transfer function of an armature controlled DC motor. 04
 - (c) For a closed-loop control system whose transfer function is given as, 07

$$\frac{C(s)}{R(s)} = \frac{4}{s(s+1)(s+3)}$$

Obtain the state equations and give block diagram representation for state model.

OR

		OR	
Q.3	(a)	Using suitable diagram derive the transfer function of Thermometer placed in water bath as a Thermal system.	03
	(b)	Sketch and explain, how damping ratio affects the time response of a second order system?	04
	(c)	A unity feedback system is characterized by an open loop transfer function	07
		$G(s) = \frac{K}{s(s+10)}$. Determine the gain K so that the system will have a damping	
		ratio of 0.5. For this value of K, determine rise time, settling time, time to peak	
		overshoot, and peak overshoot for unit step input.	
Q.4	(a)	Define Routh's stability criterion.	03
-	(b)	Construct Routh array and determine the stability of the system whose	04
		characteristic equation is $s^{6} + 3s^{5} + 5s^{4} + 9s^{3} + 8s^{2} + 6s + 4 = 0$.	
	(c)	Investigate the stability of a closed-loop system whose open-loop transfer	07
	(-)		
		function is $G(s)H(s) = \frac{1}{s(s+1)}$ using Nyquist stability criterion.	
		OR	
Q.4	(a)	How to determine gain margin and phase margin from the polar plot or	07
		Nyquist plot?	
	(b)	Given $G(s)H(s) = \frac{12}{s(s+1)(s+2)}$. Draw the polar plot and determine its gain	07
		margin and phase margin. System is stable or not?	
Q.5	(a)	Define and explain following terms with respect to root locus	07
C		(i) Centroid (iv) Breakaway point	
		(ii) Asymptote (v) Breakin point	
		(iii) Dominant pole (vi) Angle of departure (vii) Angle of arrival	
	(b)	Sketch the root locus of the system whose open-loop transfer function is	07
		$G(s)H(s) = \frac{K}{s(s^2 + 2s + 2)}$. Comment on stability.	
		OR	
Q.5	(a)	Define and explain following terms with respect to Bode plot	07
X	()	(i) Gain crossover frequency (iii) Gain Margin	01
		(ii) Phase crossover frequency (iv) Phase margin	
	(b)		07
	~)	Draw the Bode plot for a system having $G(s)H(s) = \frac{80}{s(s+2)(s+20)}$.	
		Find out Gain margin, Phase margin, Gain crossover frequency and phase	

cross over frequency. Comment on the stability.

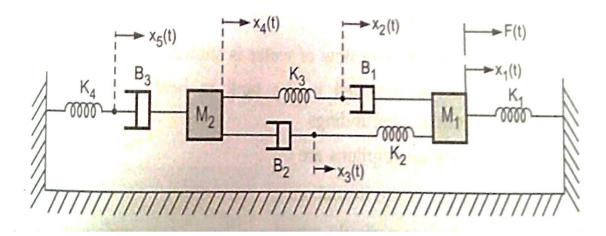


Fig. 2 (For Q.2 (b))

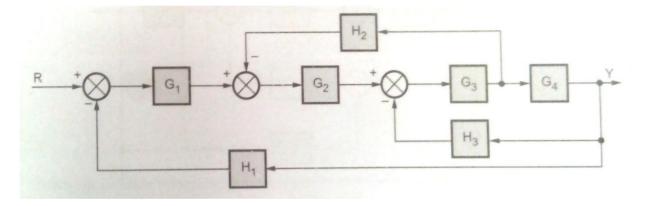
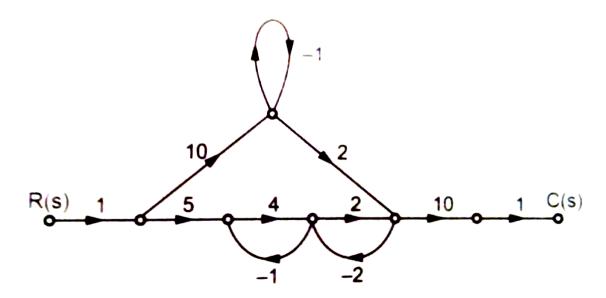



Fig. 3 (For Q.2 OR (b))

