Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(New) • EXAMINATION - WINTER 2016

Subject Code:2150501

Subject Name: Mass Transfer Operation - I

Time:10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Short Questions

- 1 State Fick's law of diffusion.
- 2 For the decomposition of N_2O_5 (A) as per the reaction $N_2O_5 \rightarrow .NO_2 + 1/2O_2$, If O_2 (B) diffuses back then Calculate the value of NA/(NA+NB)
- 3 State the unit of diffusivity.
- 4 For sparingly soluble gas which phase is controlling?
- 5 Define chemical equilibrium.
- 6 For low pressure drop which column is suitable tray or packed?
- 7 Name any four packings used in packed tower
- 8 State typical example of extraction system.
- 9 Define selectivity.
- 10 State any two industrial applications of leaching.
- 11 Define Magma.
- 12 Define supersaturation.
- 13 Name any two types of trays used in tray tower
- 14 Define N and J type flux.

Q.2 (a) State and discuss the types of diffusion with suitable example. 03

- (b) For equimolar counter diffusion show that $D_{AB} = D_{BA}$
- (c) Methane diffuses at steady state through a tube containing helium for the case **07** equimolar counter diffusion. At point 1, the partial pressure of methane is 55 kPa and at point 2, 0.03 m apart is 15 kPa. The total pressure is 101.325 kPa and temperature is 298 k, at this temperature and pressure the value of diffusivity is 6.75×10^{-5} m²/s. Calculate the partial pressure of methane at point 0.02 m apart from point 1 for the above case.

OR

(c) Define F-type and k-type mass transfer coefficients. Also derive the 07 relationship for steady state equimolar counter diffusion between F and k type coefficients.

04

14

Date:24/11/2016 Total Marks: 70

Q.3	(a)	Explain the concept of penetration theory and state its assumptions.	03
	(b)	Derive the relation for steady state equimolar counter diffusion for gases.	04
	(b)	Discuss the analogy among Heat, momentum and mass transfer.	07
		OR	
Q.3	(a)	Write a short note on loading and flooding.	03
	(b)	In a mass transfer apparatus operating at 1 atmosphere the individual mass	04
		transfer coefficient have the following values $kx = 22 \text{ kg mol/m}^2$.h, $ky = 1.07$	
		kg mol/m ² .h. The equilibrium compositions of the gaseous and liquid phases	
		are characterized by Henry's law $p^* = 0.08 \times 10^6 \text{ X} \text{ mm Hg}$. Determine i) the	
		overall mass transfer coefficients, ii) How many times the diffusion resistance	
		of liquid phase differs from that of gas phase?	
	(c)	Explain schematically the working of tray tower and its associated problems.	07
Q.4	(a)	Define Conning, weeping and dumping.	03
	(b)	State and explain the characteristics of packing.	04
	(c)	Compare tray tower and packed tower in terms of its advantages and	07
		disadvantages.	
		OR	
Q.4	(a)	Write a short note on heap leaching.	03
	(b)	Differentiate between ideal and non-ideal solutions with suitable example.	04
		Also state the characteristics of ideal solution.	
	(c)	1000 m ³ /h of a gas mixture containing 10 mole% solute and rest inert enters	07
		the absorber at 300 k temperature and 106.658 kPa pressure. 90% of the	
		original solute is removed. Solute free water used for absorption contains 5	
		mole% solute when it leaves the tower at the bottom. Calculate the solvent	
		molar flow rate to tower.	
Q.5	(a)	Derive the mixture rule.	03
	(b)	Discuss the criteria for solvent selection in extraction	04
	(c)	A solution containing 5% acetaldehyde and 95% toluene is to be extracted	07
		with water in five stage crosscurrent extraction unit to extract acetaldehyde.	
		Toluene and water are essentially insoluble. If 25 kg of water each time are	
		used per 100 kg of feed, calculate the amount of acetaldehyde extracted and	
		final concentration of exit solution. The equilibrium relationship is given as:	
		Y = 2.20 X where $Y = kg$ acetaldehyde/kg water	
		And $X = kg$ acetaldehyde/kg toluene	
		OR	
05	(a)	Explain the working of Shank's system in detail with schematic diagram	03

Q.5 (a) Explain the working of Shank's system in detail with schematic diagram. 03

2

(b)	State and discuss the various techniques for achieving super satur	ation with	04
	suitable example		

(c) Explain the working of Oslo krystal evaporative crystallizer

07