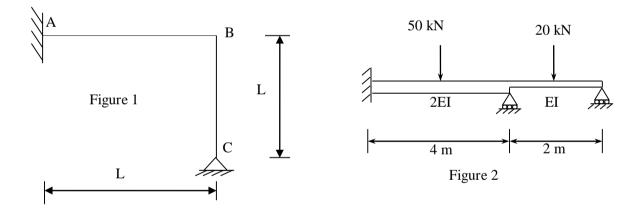
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (NEW) EXAMINATION- WINTER 2016

Subject Name: Advanced Structural Analysis Time: Total N			4/11/2016 Marks: 70	
2	. Ma	tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.		
			Marks	
Q.1		Short Questions	14	
	1	Define the flexibility coefficient Fij		
	2	Define the stiffness coefficient Sij.		
	3	Define mechanical hinge.		
	4	Define plastic hinge.		
	5	Plastic modulus of section.		
	6	Define Shape factor		
		Fill in the Blanks		
	7	The final size of the stiffness matrix depends on indeterminacy.		
	8	The final size of the flexibility matrix depends on indeterminacy.		
	9	In the plastic method of analysis the shape factor is the ratio of to .		
	10	Dome is the structure which resists force mainly by stress and stress.		
	11	The shape of the cross-section, which has the largest shape factor, is		
	10	(Rectangular, I-section, diamond, solid circular).		
	12	The relation between Flexibility (F) and Stiffness (S) is		
	13	In the theory of plastic bending of beams, the ratio of the collapse		
		load to the working load is called (Load factor, shape factor factor of acfaty plastic spation modulus)		
	14	factor, factor of safety, plastic section modulus).		
	14	Spherical dome is obtained by revolution of about its diameter.		
Q.2	(a)		03	
	A	collapse load in plastic analysis.		
	(b)	Differentiate flexibility and stiffness matrix method of analysis.	04	
	(c)	Develop Stiffness matrix 'S' for the frame shown in Figure 1.	07	
	(\cdot)	OR Deschar flassikilita matrix (E) for the frame abaser in Eisens 1. Take	07	
	(c)	Develop flexibility matrix 'F' for the frame shown in Figure 1. Take	07	
0.2	(a)	reaction at support 'C' as a redundant reaction.	07	
Q.3	(a)	Calculate the shape factor and plastic moment capacity for a square section arranged as diamond shape having size of 150mm and x axis	07	
		passing through one of the diagonals.		
	(b)	Calculate the collapse load in terms of M_p for the fixed beam	07	
	(0)	subjected to load of 100 kN as a distance of 8m from left end. Length	07	
		of the beam is 12m.		
		OR		
Q.3	(a)	Derive the formula for M_p required for the propped cantilever beam	07	
L		loaded by a collapse uniformly distributed load of $W_c kN/m$.		

- (b) Calculate the Mp required for a fixed beam of span 10m and loaded 07 by a collapse uniformly distributed load of 25kN/m over left half 5m.
- Q.4 (a) Define 'dome'. Derive the expression for meridional thrust for a 07 spherical dome subjected to uniformly distributed load.
 - (b) A spherical dome with a span of 16m and central rise of 4m has all-inclusive load of 12 kN/m². Calculate all the stresses at the mid height. Take thickness of dome 120mm.


OR

- Q.4 (a) Derive formula for meridional and hoop force in conical dome 07 subjected to concentrated load 'W' at the vertex, with usual notations.
 - (b) A conical dome of 12 m diameter with a central rise of 3.5 m supports total uniformly distributed load of 5 kN/m² over the surface inclusive of self-weight. Calculate maximum Meridional and hoop force in the dome.
- Q.5 (a) Analyze the continuous beam shown in figure 2 using Flexibility 14 method. Draw shear force and bending moment diagram also. The concentrated loads are acting on mid of the span.

OR

Q.5 (a) Analyze the continuous beam shown in figure 2 using Stiffness 14 method. Draw shear force and bending moment diagram also. The concentrated loads are acting on mid of the span.
