Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(New) • EXAMINATION – WINTER 2016

Subject Code:2151001 Date:22/11/2016

Subject Name:Microcontroller and Interfacing

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1		Short Questions	14
•	1	True or False: No value can be loaded directly into internal SRAM.	01
	2	True or False: Every member of the AVR family regardless of Program ROM size, wakes up at memory location	01
	3	\$0000 when it is powered up(RCALL, CALL) takes more ROM space.	01
	4	EXORing an operand with itself results in	01
	5	How many LSR instructions are needed to divide a number by 32.	01
	6	True or False: We can access the extended I/O register	01
	7	using the I/O direct addressing mode. The Instruction LD R19,0x95 usesaddressing	01
	8	mode. Which register is the low byte of x register?	
	9	True or False: The status register of the AVR is bit	01 01
	10	addressable. True or False: The AVR EPROM memory is used for both	01
	11	program and data.	
	11 12	2 21	
	13		
	13	then we use (Program Rom, Data RAM) to store it.	01
	14	How many timers do we have in the ATmega32.	01
Q.2	(a)	Explain register indirect addressing mode with example.	03
	(b)	Draw and explain the Data memory for the AVR with Extended I/O Memory.	04
	(c)	Draw and explain the Harvard architecture in the AVR.	07
	()	OR	0=
0.2	(c)	Describe the different features of the RISC. Explain following instruction with example: SBI, SEZ,	07 03
Q.3	(a)	LDS.	
	(b)	Draw and explain the status register of AVR Microcontroller.	04
	(c)	5 Hex numbers are stored in memory. Write a program to convert these numbers in BCD equivalent. OR	07
Q.3	(a)	Explain following instruction with example: SBIC, TST, ST.	03
	(b)	What is Assembler directive? Explain following assembler directive with example. EQU, SET.	04

	(c)	Write an assembly language program to generate Fibonacci series for first 10 numbers.	07
0.4	(a)		03
Q.4	(a) (b)	Write down different steps in executing an Interrupt. Show the instruction to	03
	(D)	1. Enable Timer0 overflow interrupt and Timer2	04
		compare match Interrupt.	
		2. Disable Timer0 overflow interrupt.	
	(c)	Using CTC mode write a program to generate a delay of	07
	(C)	8ms. Assume XTAL = 8 MHz.	07
		OR	
0.4	(a)	With Fosc =8 MHz, Find the UBRR value needed to have	03
C ·-	()	the following baud rates.	
		1. 9600 2. 4800 3. 2400 4.1200	
	(b)	Draw and explain TCCR0 register in AVR.	04
	(c)	Write a program to transmit the message "YES" serially at	07
		9600 baud, 8 bit data and 1 stop bit. Do this forever.	
Q.5	(a)	Which are the different features of ADC in AVR?	03
	(b)	Draw the interfacing diagram of keyboard with AVR	04
		microcontroller and explain its working.	
	(c)	Two strings are given in memory. String s1 = "Hello",	07
		String s2 = "World". Write an assembly language program	
		to display string s1 on 1st row of LCD and string s2 on 2nd	
		row of LCD.	
		OR	0.0
Q.5	(a)	Explain the criterion need to be considered in choosing the	03
	(1.)	relay.	0.4
	(b)	How does SPI bus protocol work?	04
	(c)	A switch is connected to pin PA7(PortA.7). Write a	07
		program to monitor the status of the SW and perform the	
		following. 1. If SW = 0, the stapper motor moves electrying.	
		1. If SW = 0, the stepper motor moves clockwise.	
		2. If $SW = 1$, the stepper motor moves anti clockwise.	
