GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (NEW).EXAMINATION – WINTER 2016

Subject Code: 2161707 Subject Name: Control System Design Time: 10:30 AM to 01:00 PM Instructions:

Date: 22/10/2016

Total Marks: 70

07

07

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Derive the state space model for RLC network.
 - (b) Define compensation. Explain difference between lead compensation, lag 07 compensation and lead-lag compensation.
- Q.2 (a) For an aircraft position control having open loop transfer function G(s)= 07 K/s(s+3)(s+6). Design the suitable compensator having w_n (natural frequency)= 2rad/sec, damping ratio = 0.5 and $K_v >= 10 \text{sec}^{-1}$
 - (b) Design suitable compensated bode plot for unity feedback system to meet the following performance specifications. Phase Margin>= 35° for the system $G(s)=10/s^2(0.2s+1)$.

OR

- (b) Design the compensator using Root locus for the system defined as G(s)=k/s². 07 Which would satisfy the following specifications Settling Time <=4sec and Peak overshoot=20%. Draw the uncompensated and compensated root locus.
- Q.3 (a) Design the controllability and observability for the system given below:

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

(b) Design the state feedback controller for the system given below using 07 Ackermann formulae with poles s = -1+2j, -1-2j.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 1.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} u$$

OR

Q.3 (a) Design state feedback controller with observer technique with for system below 07 with desired poles s = -10, -10.

$$\mathbf{A} = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

(b) Find the controllability and observability for the system given below:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

07

Q.4	(a)	Explain the control of uncertain parameter in robust control system.	07
	(b)	Explain dead beat response and narrate the design process for it.	07
		OR	
Q.4	(a)	Define robust control system with system sensitivity. Explain how analyze the robustness of the system.	07
	(b)	Explain robust PID Controller.	07
0.5	(a)	Explain Lyapunov stability for linear system.	07
	(b)	Explain Linear Quadratic Regulator.	07
		OR	
Q.5	(a)	Explain optimal control system.	07
	(b)	Explain Internal Model Design.	07
