Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER - VI (NEW).EXAMINATION - WINTER 2016

S	ubje	ect Code: 2163609 Date: 22/10/2016	
T	'ime	ect Name: Basics of Mass Transfer : 10:30 AM to 01:00 PM Total Marks: 70	
Ir	struc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Derive the steady state molecular diffusion equation for liquid for both the cases.	07
	(b)	Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) solution 1 mm thick at 17°C when the concentrations on opposite sides of the film are, respectively, 9 and 3 wt % acid. The diffusivity of acetic acid in the solution is $0.95 * 10^{-9} \text{m}^2/\text{s}$. The density of 9 % solution is 1012kg/m^3 , The density of 3 % solution is 1003.2kg/m^3	07
Q.2	(a) (b)	Explain Film theory in detail with all assumptions and derivation. Explain Direct contact of two Immiscible phases. OR	07 07
	(b)	Oxygen (A) is diffusing through carbon monoxide (B) under steady state conditions, with the carbon monoxide non-diffusing. The total pressure is $1.0 * 10^5 \text{ N/m}^2$, and the temperature 0^0C . The partial pressure of oxygen at two planes 2 mm apart is, respectively, 13000 and 6500 N/m ² . The diffusivity for the mixture is $1.87 * 10^{-5} \text{ m}^2/\text{s}$. Calculate the rate of diffusion of oxygen in kmol/s through each square meter of the two planes.	
Q.3	(a) (b)	 Explain Penetration theory with the example of bubble. The equilibrium distribution of a solute A between air and water is given by y=1.2x At a certain point the concentration of solute A in the bulk air is 0.04 mole fraction and that in the bulk aqueous phase is 0.025 mole fraction. 1) Calculate the overall gas-phase and the overall liquid-phase driving forces for mass transfer? 2) At the same point, the local individual mass transfer coefficients for the transport of A are, k_y= 7.2 kmol/(h)(m²)(Δy) and k_x= 4.6 kmol/(h)(m²)(Δx). Calculate (a) the interfacial concentrations in both the gas-phase and liquid phase (b) The overall mass transfer coefficients, Kx and Ky (c) The local mass flux, N_A. 	07 07
		OR	

Q.3 (a) Explain methods of conducting the mass transfer operations.

07

	(b)	The gas-phase mass transfer coefficient for the evaporation of a drop of ethyl alcohol in a stream of air at 300 K and 1.2 bar pressure is $k_G = 2.4 * 10^{-6} \text{kmol/(s)(m^2)(mm Hg)}$. (1) If the diffusivity of alcohol in air is 0.102 cm²/s at 0°C, estimate the thickness (in mm) of the stagnant gas-film. Vapor pressure of alcohol = 0.0877 bar at 300 K. (P _{A2} =0). R=0.08317 (m³)(bar)/(kmol)(K)	07
		(2) Express k_G in $lbmol/(ft^2)(min)(psi)$ (Take 1 kmol= 2.2046 lbmol)	
Q.4	(a)	Explain in detail the drying rate curve with all graphs and rate equation.	07
	(b)	200 moles of benzene & toluene containing 55 mole% benzene is subjected to a differential distillation at atmospheric pressure. The composition of the benzene in the residue is 30 mole%. Calculate the total moles of the mixture distilled. (Graphical method). Relative volatility is 1.8.	07
		X 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6	
0.4	(-)	OR	07
Q.4	(a)	Explain differential distillation in detail and derive Rayleigh equation. A continuous counter-current dryer is used to dry 500 kg dry solid/h containing	07 07
	(b)	0.035 kg total moisture/ kg dry solid to a value of 0.0017 kg total moisture/ kg dry solid. The granular solid enters at 25°C & leaves at 60°C. The heating medium is air which enters at 84.2°C, has a humidity of 0.0175 kg H ₂ O/kg dry air & leaves at 32.8°C. Calculate the air flow rate & the outlet humidity, assuming the heat losses from the dryer to be 9500 kJ/hr. The constant heat capacity of the dry solid is 1.465 kJ/kg.K Take reference temp. 0° C, $\lambda = 2501$ kJ/kg	07
Q.5	(a)	Derive the overall mass transfer coefficient (Ky and Kx) with the help of two film theory.	07
	(b)	(1) Explain equilibrium between phases with example and three cases.	04
		 (2) Define the term: (i) Bound moisture (ii) Sherwood number (iii) Differential contact operation 	03
		OR	
Q.5	(a) (b)	Derive Mass transfer coefficients of gas and liquid for two different cases. (1) Explain Constant pressure Tx-y diagram with neat sketch.	07 04
		 (2) Define the terms: (i) Relative volatility (ii) Difference between distillation and LLE (iii) In which case flux N_A will equal to flux J_A? 	03
