GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII(NEW) • EXAMINATION - WINTER 2016

Subject Code:2170507 Subject Name: Computer Aided Process Synthesis Time: 10.30 AM to 1.00 PM

Date:29/11/2016

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 Q.1 Two cold streams C_1 and C_2 are to be heated and two hot streams H_1 and H_2 are (a) to be cooled without phase change. Their conditions and properties are as follows:

Stream	Tin (°C)	Tout (°C)	FCp (kW/°C)
H_1	260	160	3
H ₂	200	100	1.5
C1	120	235	2
C_2	180	300	3

Calculate the smallest possible amount of heating and cooling utilities for the above network using temperature interval method. Use $\Delta T_{min} = 20$ °C.

- (b) Discuss the pinch design approach for minimum utility requirements.
- A given batch plant produces one single product for which stage 1 requires 07 0.2 (a) 8 hours/batch; stage 2, 4 hours/batch and stage 3, 7 hours/batch. If zero wait transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours?
 - What is stream splitting? Explain how stream splitting can help in getting better **(b)** 07 design alternatives.

OR

07 **(b)** Draw the stream matching diagram abovepinch temperature by considering pinch temperature in hot stream 125°C from the data given as follows. Assume $\Delta T_{min} = 13^{\circ}C.$

Stream	Source,Ts (⁰ C)	Target, T_t (⁰ C)	$MC_p(kW/^0C)$
H1	175	45	10
H2	125	65	40
C1	20	155	20
C2	40	112	15

- 0.3 Write a short note on threshold approach temperature and optimum approach 07 (a) temperature for heat exchanger networks.
 - With a neat sketch explain heat pumping, vapour recompression and reboiler **(b)** 07 flashing.

OR

- (a) Explain the concept of multi effect distillation as possibility of energy 0.3 07 integration.
 - Explain reactor design for complex configurations. **(b)**
- **O.4** Write a short note on geometric concepts for reactor attainable region. 07 (a) 07
 - **(b)** Show steps in product and process design in chemical engineering.

07

07

OR

- Q.4 (a) Briefly describe the role of computers in product and process design.
 - (b) Discuss criteria for selection of separation methods. 07
- Q.5 (a) Discuss design of single product processing sequences. 07
 - (b) We have a mixture of five alcohols labeled as A, B, C, D and E with flows in the feed of 1, 0.5, 1, 7 and 10 mol/s respectively, for a total of 19.5 mol/s and relative volatilities are 4.3, 4, 3, 2, and 1 respectively. The information about marginal vapor flows estimated for non-key species are as under:

	А	В	Ċ	D	Е
A/B			2.6	6.5	3.2
B/C	5.3			9.3	4.0
C/D	2.4	1.3			6.7
D/E	1.5	0.8	2.0		

Find the best distillation based separation sequence.

OR

- Q.5 (a) Given the processing times for these products A, B, C, below. Determine with a Gantt Chart the make span and cycle time for manufacturing two batches of A, 1 of B and 1 of C for the following cases.
 - i. Zero-Wait policy with sequence AABC.
 - ii. Same as i) but with no intermediate storage policy (NIC)
 - iii. Same as i) but with unlimited intermediate storage policy (UIS)

(Processing Times hr)					
	Stage 1	Stage 2	Stage 3		
А	5	4	3		
В	3	1	3		
С	4	3	2		
Zero Cleanup Times					

(b) Explain algorithm for establishing distillation column pressure and condenser 07 type.

07