GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII(NEW) • EXAMINATION – WINTER 2016

Subject Code:2171917 Date:01/				
Subject Name:Steam and Gas TurbinesTotal MarkTime:10.30 AM to 1.00 PMTotal MarkInstructions:1. Attempt all questions.1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.				
Q.1	(a) (b)	Explain effect of operating variables on thermal efficiency of Gas turbineBased on General relationship Between Area, Velocity & Pressure explainA. Acerbated flow dp/p is Negative (flow through nozzle)B. Retorted flow dp/p is positive(flow through diffuser)	07 07	
Q.2	(a)	Derive an Equation of thermal efficiency & work-ratio of Ideal Brayton cycle	07	
	(b)	Derive condition for maximum discharge through the nozzle. OR	07	
	(b)	-	07	
Q.3	(a)	Draw & Explain: Pressure-Velocity compounding system of impulse turbine.	07	
	(b)	Steam leaves nozzles of De-Laval turbine with a velocity of 1150 m/s .the nozzle angle is 20°. The blades are symmetrical with blade angle of 30° . If blade velocity coefficient is 0.8 and Mechanical efficiency is 0.92. Calculate: (1) Speed of rotation if the rotor diameter is 75cm (2)Specific steam consumption in Kg/Kw-hr (3) Blade efficiency & Axial thrust.	07	
Q.3	(a) (b)	OR Draw & Explain: Pulse-jet engine with applications A simple Impulse turbine has a mean blade ring diameter of 75cm and run at 3000 RPM. The blade speed ratio is 0.46. and the discharge is axial the nozzle angle is 20° and blade friction is 0.94. Determine: (1)Blade angles (2)Theoretical specific power output.	07 07	
Q.4	(a) (b)	Explain construction & working of Turbo-prop Engine. Draw & Explain Can type combustor with swirl floe flame stabilizer	07 07	
Q.4	(a)	OR Write short note on Turbojet engine with Afterburner.	07	
-	(b)	A gas turbine unit has a pressure ratio of 6:1 and maximum cycle temperature of 627 C. The isentropic efficiency of compressor and turbine are 0.82 & 0.85 respectively. Calculate the power output in KW of an	07	

electrical generator geared to the turbine when the air enters the compressor

at 15°C, 1 bar pressure with flow rate of 18 Kg/sec.

- Q.5 (a) Draw & Explain: Gas & Steam turbine combined cycle power plant
 - (b) A dry saturated steam enter steam nozzle at pressure of 15 bar and is discharge to a pressure of 2 bar .If the dryness fraction of discharge steam is 0.86. What will be the final velocity of steam? Neglected initial velocity. If 10% heat is loss due to friction then what is the final reduction in velocity ratio.

OR

- **Q.5** (a) What is governing of steam turbine? Explain "Throttle governing
 - (b) A C-D nozzle is to be discharge in which steam is initially at 14 bar & 80° C of superheated is to be expand to back pressure of 1.05 bar .Determine the necessary throat & Exit diameter of a nozzle for steam discharge of 500 Kg/hr. Assuming that expansion of steam is thermal equilibrium throughout and friction reheat amount of total isentropic enthalpy drop to be effective in divergent part of nozzle.

07

07

07