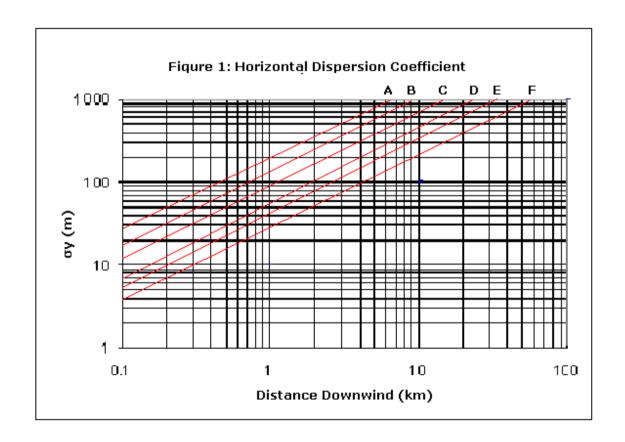
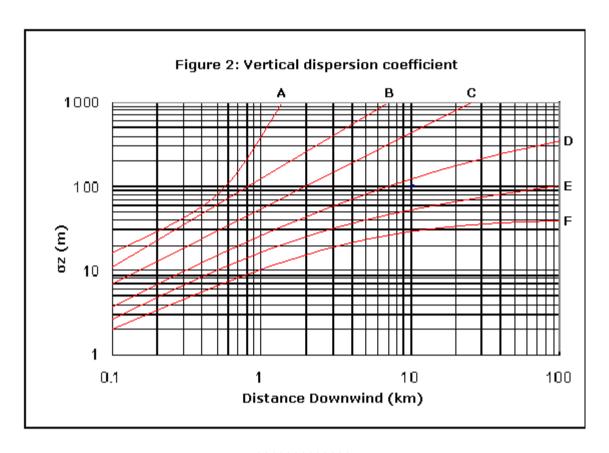
Seat No.:	Enrolment No.

Subject Code:2173510


GUJARAT TECHNOLOGICAL UNIVERSITY


BE - SEMESTER-VII(NEW) • EXAMINATION - WINTER 2016

Date:25/11/2016

Subject Name:Design of Air Pollution Control System and Air Quality Modeling(Department Elective - I)			
Ti	me:10 truction 1. 2.	0.30 AM to 1.00 PM Total Marks: 7	0
Q.1	(a)	Define: ESP, stability classes, air quality model, Plume rise, desulphurization, migration velocity, air pollution.	07
	(b)	A plate type ESP consist of 12 equal channel. The spacing b/w plates is 0.2m, and the plates are 2m high and 2m long. The unit handles 12,000m3/hr of gas. Consider migration velocity=0.1m/s. a) What is the efficiency of collection? b) What should be the length of the plates for achieving 99% efficiency, if other conditions are same?	07
Q.2	(a)	Sulphur dioxide is emitted at a rate of 2kg/s from the top of a chimney that is 120m high. The plume initially rises vertically a further 10m above the chimney exit, before being convected horizontally by a wind speed of 15m/s under conditions of neutral stability. Calculate; (a) The ground level concentration at a distance of 800m downwind of the chimney (that is, along the x-axis). (b) The location (x) where the maximum ground level concentration occurs downwind of the chimney on the x-axis. (c) The concentration at this location.	07
	(b)	What do you understand by Dispersion Modeling? Explain in detail.	07
	(b)	OR Write about Photochemical Modeling and Receptor Modeling.	07
Q.3	(a) (b)	Discuss in detail "Desulphurization of flue gases" Write short notes: • AERMOD • CALPUFF	07 07
		OR	
Q.3	(a) (b)	Explain "The Reinluft Process" for sulphur dioxide control. Write short notes: • ISCST3 • CALINE4	07 07
Q.4	(a)	Discuss "Control of oxides of Nitrogen by Modification of Operating Conditions and Modification of Design Condition".	07

	(b)	Write short notes:	07
		 Control technologies for Hydrocarbons 	
		 Control technologies for CO 	
		OR	
Q.4	(a)	Discuss "Control of oxides of Nitrogen by Flue gas treatment methods".	07
	(b)	Write short notes:	07
		Air quality Dispersion models	
		Desulphurization of fuel oils	
Q.5	(a)	Write about Gaussian Plume model in detail with its limitation.	07
	(b)	Discuss in detail "Wet scrubber for Air Pollution control".	07
		OR	
Q.5	(a)	Explain "DCDA (Double Contact Double Absorption) Process" for production	07
		of sulphuric acid from sulphur dioxide.	
	(b)	Discuss working of fabric filter in detail.	07
