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1. Attempt any 5 questions.  
2. Make suitable assumptions wherever necessary. 
3. Figures to the right indicate full marks. 

Q.1 (a) 1 For what value of α  
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Continuous at every x ? 
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 2 Determine absolute extrema of 
( ) xxxf += 2 , [ ]5,5−∈x .  
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 (b)1 Write all possible functions whose derivative is 53 2 +x . 1 
 2 Show that ( ) 2229 2 −+= xxxg has at least one zero in the interval 
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 (c) Discuss Maclauarin’s series for ( ) xxf =  and ( ) xxg = . 3 
Q.2 (a)1 State Fundamental Theorem of Calculus and evaluate  
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2 State the rule which helpful to evaluate dt

t

x

x
∫

1

1  and then evaluate. 
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 (b)1 Determine volume of a sphere of radius a  by the solids of revolution.  3 
 2 The region bounded by the curve 26 xxy −= , the x-axis and the line 

3=x is revolved about the x-axis to generate a solid. Find the volume of 
the solid.  
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 (c) 
Let 
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 . 

Prove or disprove that it is reimann integrable. 
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Q.3 (a) 
1 Determine the convergence of ∫
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2 Prove that ∫
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ex  is convergent.  
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 (b) Expand ( ) 1146 23 ++−= xxxxf in Taylor’s series about 2=x . 3 
 (c) 
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Q.4 (a) 
1 State the Integral Test and determine the convergence of ∑
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2 Determine the convergence of ∑
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 (b) 
1 Investigate the convergence  of ∑
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 2 Show that  
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Is continuous everywhere except at origin. 
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 (c) Solve the system yxu += 2 ,  yxv 2−= for x  and y in terms of u  and  

v . Also find ( )
( )vu
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∂
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Q.5 (a) 
1 Find 

dt
dw  at 0=t  if 22 zyxw +=  

where tztytx === ,sin,cos . 
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 2 Let ( )yxfu ,=  is a homogeneous function of degree n. 

Then find 
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 (b) 
Find the directions in which ( ) ( ) ⎟

⎠
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22 yxyxf  

(a)  increases most rapidly at the point (1,1) 
(b)  decreases most rapidly at (1,1) 
(c)  what are directions of zero change in f  at ( )1,1  ? 
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 (c) Define Saddle Point. Find the local extreme values of 
( ) 622 ++−−−= yxxyyxxf  if possible. 
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Q. 6 (a)1 Sketch the triangle R  in the xy  plane bounded by the x  axis, the line 
xy 2= , and the line 1=x .  

Evaluate ∫∫
R
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xsin . 
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 2 Sketch the region of integration and evaluate by reversing the order of 
integration. 
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 (b) Sketch the region of integration and change in to polar integral and then 
evaluate. 
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 (c) Find the volume of tetrahedron whose vertices 
( ),0,0,0 ( ),0,0,1 ( ),0,1,0 ( )1,0,0  by triple integral. 

4 

Q.7 (a) 
 

1 Evaluate ( )∫ +
C

dsyx 2 where C  is the straight line segment tx 2= , 

ty −= 1 , 1=z    for   10 ≤≤ t  . 

4 

  
2 Let kjxyixF ˆˆˆ2 2 ++= is the velocity field of a fluid in space. Find the 

flow along the curve kjtit ˆˆˆ ++ , 10 ≤≤ t . 

3 

 (b) 
Verify Green’s theorem for jxyixF ˆˆ2 += , :C  The square bounded by 

,0=x ,1=x ,0=y 1=y . 

4 

 (c) 
Find a parametrization of the cylinder ( ) ,42 22 =−+ yx  40 ≤≤ z  

3 
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