Seat No.: ____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

SEMESTER- 3 EXAMINATION - WINTER 2012									
Subject code: 130002 Date: 09/01/201									
Subject Name: Advanced Engineering Mathematics									
Time:10:30 – 01:30 Total Mai									
Instructions:									
	1. Attempt all questions.								
			suitable assumptions wherever necessary.						
	3.	Figures	s to the right indicate full marks.						
Q.1	(a)	i	dy = 1	03					
Q.1	(a)	1	Solve $\frac{dy}{dx} + \frac{1}{x^2}y = 6e^{1/x}$.	05					
		ii	Solve $x^2 y dx - (x^3 + xy^2) dy = 0$.	04					
	(b)		Find the series solution of $(x^2 + 1)y'' + xy' - xy = 0$ near $x = 0$.	07					
Q.2	(b) (a)			07 07					
Q.2	(a)		Solve $2\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} + u$ subject to the condition $u(x,0) = 4e^{-3x}$.	07					
	(b)		Find the series solution of $y'' = 2y'$ in powers of x.	07					
			OR						
	(b)	i	Solve $\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 12 y = e^{6x}$.	03					
		ii	Solve $(D^2 - 3D + 2)y = \frac{e^x}{1 + e^x}$ by method of variation of parameters.	04					
Q.3	(a)		Find the fourier series of $f(x) = x^2 (0,\pi)$ = 0, $(\pi, 2\pi)$.	07					
	(b)		Find the half range cosine series for $f(x) = x$, $0 < x < 3$.	07					
			OR						
Q.3	(a)		Find fourier series of $f(x) = x^2 + x$ where $-2 < x < 2$.	07					
	(b)		f(x) = x, -1 < x < 0	07					
			Find fourier series of $f(x) = x + x$ where $-2 < x < 2$. Find fourier series of $f(x) = x, -1 < x < 0$ = 2, 0 < x < 1						
Q.4	(a)		Prove that $L(1) = \frac{1}{s}$ and $L(\sinh at) = \frac{a}{s^2 - a^2}$	07					
	(b)		Evaluate						
			(i) $L^{-1}\left\{\frac{6s}{s^2-16}\right\}$	03					
			(ii) $L^{-1}\left\{\frac{10}{(s-2)^4}\right\}$	04					
			OR						
Q.4	(a)		Solve by laplace transform $y'' + 6y = 1$, $y(0) = 2$, $y'(0) = 0$.	07					
C	(b)			07					
			If $L{f(t)} = \overline{f}(s)$ and if $L\left\{\frac{f(t)}{t}\right\}$ exists then prove that						
			$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \overline{f}(s) ds$. Also find $L\left\{\frac{\sin 2t}{t}\right\}$.						

Q.5	(a)	(1)	Define following terms. (i) Error function.	02
			(ii) Sinusoidal function.	02
		(2)	Form partial differential equation of $z = f\left(\frac{x}{y}\right)$.	03
	(b)		Find the fourier integral representation of the function	07
			f(x) = 2, x < 2 = 0, x > 2	
			= 0, x > 2	
			OR	
Q.5	(a)	(1)	Form partial differential equation of $f(x + y + z, x^2 + y^2 + z^2) = 0$	04
			where f is an arbitrary function.	
		(2)	Solve $\frac{\partial^2 z}{\partial r^2} = z$.	03
	(b)	(1)	Solve $p + q^2 = 1$	07

5) (1) Solve
$$p + q^2 = 1$$

(2) Solve $p^2 + q^2 = z^2(x + y)$
