
Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER V • EXAMINATION – WINTER - 2012 Subject code: 150103 Date: 17-01-2013

	U	Code. 130103 Date. 17-01-2013	
Su	bject	Name: Aircraft structure II	
Ti	me: 02	2:30 pm to 05:00 pm Total Marks: 70	
	struct	•	
111		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		· · · · · · · · · · · · · · · · · · ·	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	State and explain with usual notations Castigliano's first theorem	07
~ -	(b)	Explain about unsymmetrical bending and derive the equation of	07
	(D)	unsymmetrical bending stress using rectangular coordinates.	U
		unsymmetrical bending sitess using rectangular coordinates.	
0.3	(-)	Evaloin Elight anyelen die grow	0.5
Q.2	(a)	Explain Flight envelop diagram.	07
	(b)	Find deflection at point B and C for the cantilever beam as shown in figure 1	07
		using unit load method. Take EI=32000 kN.m ² .	
	(1.)	OR	0.5
	(b)	Find horizontal deflection at support for the truss shown in figure.2	07
		Castigliano's first theorem. Take $EI = 2 \times 10^5 \text{ N/mm}^2$, $A = 450 \text{ mm}^2$.	
O 2	(a)	Find harizontal deflection at point P for the frame shown in figure 2 using	07
Q.3	(a)	Find horizontal deflection at point B for the frame shown in figure. 3 using	07
	(b)	Castigliano's first theorem. Take EI= 60000 kN.m².	07
	(b)	Obtain flexibility matrix for the beam as shown in figure. 4 OR	U
Ω	(a)		Ω.
Q.3	(a)	A quarter circular ring beam of radius 'r', supports a concentrated load 'P' at	04
		the free end, Calculate vertical & horizontal deflection at free end.	
	(b)	Analyze the beam as shown in figure. 5 using stiffness system approach.	10
~ 4			0.0
Q.4	(a)	Enlist characteristics of Flexibility matrix	03
	(b)	Analyze the truss as shown in figure. 6 using flexibility system approach.	11
~ 4	()	OR	0.0
Q.4	(a)	Differentiate Flexibility and Stiffness	03
	(b)	Analyze the beam shown in figure. 7 using Castigliano's second theorem.	11
0.5	(-)	A how become as above heleve is subjected to a ventical above force of 200 kN	0.5
Q.5	(a)	A box beam as shown below is subjected to a vertical shear force of 300 kN.	07
		The bending Analysis, neglecting bending stress gives axial stiffener between	
		cross section 1.2 cm apart as Shown in figure 8. Determine the shear flow in the	
		box beam.	
	(b)	Explain about limit load for load factor determination.	07
		OR	
Q.5	(a)	Find out shear centre of thin walled section as shown in Fig. 9. Assume	07
		constant thickness throughout the section.	
	(b)	Explain thin walled open sections & closed sections and define shear center	07
		with its Practical significance.	
