Date: 11-01-2013

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER V • EXAMINATION – WINTER - 2012

Subject code: 150501

Subject Name: Mass Transfer Operations - I

Time: 02:30 pm to 05:00 pm

Instructions:

- **1.** Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain molecular diffusion in gases in detail. Also discuss steady state diffusion 07 of A through non diffusing B.
 - (b) Oxygen (A) is diffusing through carbon monoxide (B) under steady state 07 condition, with the carbon monoxide non diffusing. The total pressure is 1×10^5 N/m², and the temperature 0^0 C. The partial pressure of oxygen at two planes 2.0 mm apart is respectively, 13 000 and 6500 N/m². The diffusivity for the mixture is 1.87×10^{-5} m²/s. Calculate the rate of diffusion of oxygen in kmol/s through each square meter of the two planes

Q.2 (a) Discuss with neat sketch various packing materials used in Column.

(b) A packed tower is designed to recover 98% CO_2 from a gas mixture 07 containing 10% CO_2 and 90% air using water. A relation y = 14x can be used for equilibrium conditions where , y = kg CO_2 / kg dry air and x =kg CO_2 / kg water.

The water to gas rate is kept 30% more than the minimum value. Calculate the height of the tower if $(HTU)_{OG}$ is 1 meter.

OR

(h)	Discuss with exa	mples the diffusi	ion in solids	07
(\mathbf{D})	Discuss with CAd	mpies die unitusi	ion m sonus.	U /

- Q.3 (a) For given liquid flow rate give stepwise procedure to determine minimum liquid 07 gas ratio for absorbers.
 - (b) Discuss the criteria for choosing the solvent for absorption. 07

OR

- Q.3 (a) Discuss with neat diagram any one type of equipment used for extraction 07 of oil from vegetable seeds.
 - (b) Seeds containing 20 percent by weight of oil are extracted in a counter 07 current plant and 90 percent of the oil is recovered in a solution containing 50 percent by weight of oil. If the seeds are extracted with fresh solvent and 1kg of solution is removed in the underflow in association with every 2 kg of insoluble matter, how many ideal stages are required?

Q.4 (a) Discuss local and overall mass transfer coefficients.

(b) If 1000 kg/h of a nicotine (C)-water (A) solution containing 1% nicotine is to be 07 counter currently extracted with kerosene at 20⁰ C to reduce the nicotine content to 0.1%, determine (a) the minimum kerosene rate and (b) the number of theoretical stage required if 1150 kg of kerosene is used per hour.

Sr. No.	x'	y'	Sr. No.	x'	y'
1.	0	0	5.	0.00751	0.00686
2.	0.001011	0.000807	6.	0.00988	0.00913
3.	0.00246	0.001961	7.	0.0204	0.01870
4.	0.00502	0.00456			

07

07

		x' :kg nicotine/ kg water y': kg nicotine/ kg kerosene	
		Water and kerosene are essentially insoluble.	
		OR	
Q.4	(a)	Give the comparison of tray and packed tower.	07
Q.4	(b)	Discuss with diagram equipment for Gas liquid operations for a batch system.	07
Q.5	(a)	Discuss preparation of the solids for leaching in detail	07
•	(b)	Give comparison of Random packing and stacked packing.	07
		OR	
Q.5	(a)	Describe differential (continuous contact) extractor in detail.	07
	(b)	Discuss construction and working of sieve trays. Explain Tray efficiency.	07
