Seat No.:	Enrolment No.
Deat 110	Linoinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - VI • EXAMINATION - WINTER 2012

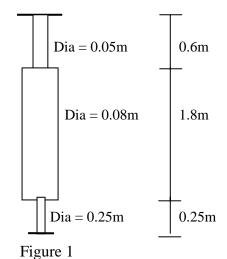
Date: 04/01/2013

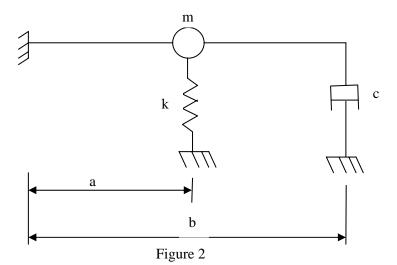
Total Marks: 70

Subject code: 160103

Time: 02.30 pm - 05.00 pm

Subject Name: Vibration and Noise Control


Instr	ucti	ions:	
		Attempt any five questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	 i. Explain torsional oscillations. ii. Find the natural frequency of torsional oscillations for the system shown in Figure 1. J = 14.7 kg-m2 and G = 0.83 x 10¹¹ N/m2 	03 04
	(b)	 Derive the expression for work done by a harmonic force on harmonic motion. Explain fluid dash-pot damping using suitable figures and equations. 	04 03
Q.2	(a)	A rotating m/c having a mass of 1200 kg has an unbalanced mass of 1 kg located at 6.0 cm radius. Assume the damping factor to be 0.1. Find out the amplitude of vibration if the m/c is operating at a speed of 1440 rpm. Resonance occurs at 231.44 rad/sec. Prove that for an undamped system the amplitude is higher than that of damped system.	07
	(b)		07
	(b)	i. Explain beats with a neat and labeled sketch.	03 04
Q.3	(a)	1 7	07
	<i>a</i> >	supported beam of length L and uniform c/s.	0 =
	(b)	 i. Explain longitudinal vibration of bars ii. Sketch and indicate the degrees of freedom for two degree and four degree of freedom systems. Give two examples each. 	05 02
Q.3	(a)		07
Q.C	(b)		07
Q.4	(a)	i. Describe main causes of vibration and the remediesii. Describe magnification factor in detail and sketch the relevant graphs	03 04
	(b)	Explain giving two examples each: Springs in series and Springs in parallel	02
		ii. Explain isolation using springs and dampers. Sketch the relevant graphs and explain the conclusions from that graph. OR	05
Q.4	(a)	Derive the equation for natural frequency for the double pendulum having two equal masses of mass M kg and rods of equal length L m	07


- **Q.4** (b) Explain vibration isolation of two degree of freedom system using suitable example.
- Q.5 (a) Explain rotating unbalance in a machine in detail and derive the relations 07
 - (b) i. Explain the difference between forced vibration and free vibration. Give 03 examples of forced vibration
 - ii. Derive the force free response of a second order system in terms of its **05** initial conditions.

OR

- Q.5 (a) Explain Maxwell's theorem using suitable example.
 - (b) A single cylinder engine drives a pump with flywheel connected in-between and forms the equivalent three rotor system. The mass moment of inertia of engine, flywheel and pump are 0.135Kg-m², 0.3 Kg-m² and 0.09 Kg-m² respectively. The shaft of diameter 60 mm has total length of 2.5 m and shaft length between engine and flywheel is 1.5 m. The modulus of rigidity of shaft material is 80 x 10⁹ N/m². Determine the natural frequency for two node system.

07

07